Skip to content

narwhals.dtypes

Array

Fixed length list type.

Parameters:

Name Type Description Default
inner DType | type[DType]

The datatype of the values within each array.

required
width int | None

the length of each array.

None

Examples:

>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> data = [[1, 2], [3, 4], [5, 6]]
>>> ser_pd = pd.Series(data, dtype=pd.ArrowDtype(pa.list_(pa.int32(), 2)))
>>> ser_pl = pl.Series(data, dtype=pl.Array(pl.Int32, 2))
>>> ser_pa = pa.chunked_array([data], type=pa.list_(pa.int32(), 2))
>>> nw.from_native(ser_pd, series_only=True).dtype
Array(Int32, 2)
>>> nw.from_native(ser_pl, series_only=True).dtype
Array(Int32, 2)
>>> nw.from_native(ser_pa, series_only=True).dtype
Array(Int32, 2)

Decimal

Decimal type.

Examples:

>>> import polars as pl
>>> import narwhals as nw
>>> s = pl.Series(["1.5"], dtype=pl.Decimal)
>>> nw.from_native(s, series_only=True).dtype
Decimal

List

Variable length list type.

Examples:

>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> data = [["narwhal", "orca"], ["beluga", "vaquita"]]
>>> ser_pd = pd.Series(data, dtype=pd.ArrowDtype(pa.large_list(pa.large_string())))
>>> ser_pl = pl.Series(data)
>>> ser_pa = pa.chunked_array([data])
>>> nw.from_native(ser_pd, series_only=True).dtype
List(String)
>>> nw.from_native(ser_pl, series_only=True).dtype
List(String)
>>> nw.from_native(ser_pa, series_only=True).dtype
List(String)

Int128

128-bit signed integer type.

Int64

64-bit signed integer type.

Examples:

>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> data = [2, 1, 3, 7]
>>> ser_pd = pd.Series(data)
>>> ser_pl = pl.Series(data)
>>> ser_pa = pa.chunked_array([data])
>>> nw.from_native(ser_pd, series_only=True).dtype
Int64
>>> nw.from_native(ser_pl, series_only=True).dtype
Int64
>>> nw.from_native(ser_pa, series_only=True).dtype
Int64

Int32

32-bit signed integer type.

Examples:

>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> data = [2, 1, 3, 7]
>>> ser_pd = pd.Series(data)
>>> ser_pl = pl.Series(data)
>>> ser_pa = pa.chunked_array([data])
>>> def func(ser):
...     ser_nw = nw.from_native(ser, series_only=True)
...     return ser_nw.cast(nw.Int32).dtype
>>> func(ser_pd)
Int32
>>> func(ser_pl)
Int32
>>> func(ser_pa)
Int32

Int16

16-bit signed integer type.

Examples:

>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> data = [2, 1, 3, 7]
>>> ser_pd = pd.Series(data)
>>> ser_pl = pl.Series(data)
>>> ser_pa = pa.chunked_array([data])
>>> def func(ser):
...     ser_nw = nw.from_native(ser, series_only=True)
...     return ser_nw.cast(nw.Int16).dtype
>>> func(ser_pd)
Int16
>>> func(ser_pl)
Int16
>>> func(ser_pa)
Int16

Int8

8-bit signed integer type.

Examples:

>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> data = [2, 1, 3, 7]
>>> ser_pd = pd.Series(data)
>>> ser_pl = pl.Series(data)
>>> ser_pa = pa.chunked_array([data])
>>> def func(ser):
...     ser_nw = nw.from_native(ser, series_only=True)
...     return ser_nw.cast(nw.Int8).dtype
>>> func(ser_pd)
Int8
>>> func(ser_pl)
Int8
>>> func(ser_pa)
Int8

UInt128

128-bit unsigned integer type.

UInt64

64-bit unsigned integer type.

Examples:

>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> data = [2, 1, 3, 7]
>>> ser_pd = pd.Series(data)
>>> ser_pl = pl.Series(data)
>>> ser_pa = pa.chunked_array([data])
>>> def func(ser):
...     ser_nw = nw.from_native(ser, series_only=True)
...     return ser_nw.cast(nw.UInt64).dtype
>>> func(ser_pd)
UInt64
>>> func(ser_pl)
UInt64
>>> func(ser_pa)
UInt64

UInt32

32-bit unsigned integer type.

Examples:

>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> data = [2, 1, 3, 7]
>>> ser_pd = pd.Series(data)
>>> ser_pl = pl.Series(data)
>>> ser_pa = pa.chunked_array([data])
>>> def func(ser):
...     ser_nw = nw.from_native(ser, series_only=True)
...     return ser_nw.cast(nw.UInt32).dtype
>>> func(ser_pd)
UInt32
>>> func(ser_pl)
UInt32
>>> func(ser_pa)
UInt32

UInt16

16-bit unsigned integer type.

Examples:

>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> data = [2, 1, 3, 7]
>>> ser_pd = pd.Series(data)
>>> ser_pl = pl.Series(data)
>>> ser_pa = pa.chunked_array([data])
>>> def func(ser):
...     ser_nw = nw.from_native(ser, series_only=True)
...     return ser_nw.cast(nw.UInt16).dtype
>>> func(ser_pd)
UInt16
>>> func(ser_pl)
UInt16
>>> func(ser_pa)
UInt16

UInt8

8-bit unsigned integer type.

Examples:

>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> data = [2, 1, 3, 7]
>>> ser_pd = pd.Series(data)
>>> ser_pl = pl.Series(data)
>>> ser_pa = pa.chunked_array([data])
>>> def func(ser):
...     ser_nw = nw.from_native(ser, series_only=True)
...     return ser_nw.cast(nw.UInt8).dtype
>>> func(ser_pd)
UInt8
>>> func(ser_pl)
UInt8
>>> func(ser_pa)
UInt8

Field

Definition of a single field within a Struct DataType.

Parameters:

Name Type Description Default
name str

The name of the field within its parent Struct.

required
dtype type[DType] | DType

The DataType of the field's values.

required

Float64

64-bit floating point type.

Examples:

>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> data = [0.001, 0.1, 0.01, 0.1]
>>> ser_pd = pd.Series(data)
>>> ser_pl = pl.Series(data)
>>> ser_pa = pa.chunked_array([data])
>>> nw.from_native(ser_pd, series_only=True).dtype
Float64
>>> nw.from_native(ser_pl, series_only=True).dtype
Float64
>>> nw.from_native(ser_pa, series_only=True).dtype
Float64

Float32

32-bit floating point type.

Examples:

>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> data = [0.001, 0.1, 0.01, 0.1]
>>> ser_pd = pd.Series(data)
>>> ser_pl = pl.Series(data)
>>> ser_pa = pa.chunked_array([data])
>>> def func(ser):
...     ser_nw = nw.from_native(ser, series_only=True)
...     return ser_nw.cast(nw.Float32).dtype
>>> func(ser_pd)
Float32
>>> func(ser_pl)
Float32
>>> func(ser_pa)
Float32

Boolean

Boolean type.

Examples:

>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> data = [True, False, False, True]
>>> ser_pd = pd.Series(data)
>>> ser_pl = pl.Series(data)
>>> ser_pa = pa.chunked_array([data])
>>> nw.from_native(ser_pd, series_only=True).dtype
Boolean
>>> nw.from_native(ser_pl, series_only=True).dtype
Boolean
>>> nw.from_native(ser_pa, series_only=True).dtype
Boolean

Categorical

A categorical encoding of a set of strings.

Examples:

>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> data = ["beluga", "narwhal", "orca", "vaquita"]
>>> ser_pd = pd.Series(data)
>>> ser_pl = pl.Series(data)
>>> ser_pa = pa.chunked_array([data])
>>> nw.from_native(ser_pd, series_only=True).cast(nw.Categorical).dtype
Categorical
>>> nw.from_native(ser_pl, series_only=True).cast(nw.Categorical).dtype
Categorical
>>> nw.from_native(ser_pa, series_only=True).cast(nw.Categorical).dtype
Categorical

Enum

A fixed categorical encoding of a unique set of strings.

Polars has an Enum data type, while pandas and PyArrow do not.

Examples:

>>> import polars as pl
>>> import narwhals as nw
>>> data = ["beluga", "narwhal", "orca", "vaquita"]
>>> ser_pl = pl.Series(data, dtype=pl.Enum(data))
>>> nw.from_native(ser_pl, series_only=True).dtype
Enum

String

UTF-8 encoded string type.

Examples:

>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> data = ["beluga", "narwhal", "orca", "vaquita"]
>>> ser_pd = pd.Series(data)
>>> ser_pl = pl.Series(data)
>>> ser_pa = pa.chunked_array([data])
>>> nw.from_native(ser_pd, series_only=True).dtype
String
>>> nw.from_native(ser_pl, series_only=True).dtype
String
>>> nw.from_native(ser_pa, series_only=True).dtype
String

Struct

Struct composite type.

Parameters:

Name Type Description Default
fields Sequence[Field] | Mapping[str, DType | type[DType]]

The fields that make up the struct. Can be either a sequence of Field objects or a mapping of column names to data types.

required

Examples:

>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> data = [{"a": 1, "b": ["narwhal", "beluga"]}, {"a": 2, "b": ["orca"]}]
>>> ser_pl = pl.Series(data)
>>> ser_pa = pa.chunked_array([data])
>>> nw.from_native(ser_pl, series_only=True).dtype
Struct({'a': Int64, 'b': List(String)})
>>> nw.from_native(ser_pa, series_only=True).dtype
Struct({'a': Int64, 'b': List(String)})

to_schema()

Return Struct dtype as a schema dict.

Returns:

Type Description
OrderedDict[str, DType | type[DType]]

Mapping from column name to dtype.

Date

Data type representing a calendar date.

Examples:

>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> from datetime import date, timedelta
>>> data = [date(2024, 12, 1) + timedelta(days=d) for d in range(4)]
>>> ser_pd = pd.Series(data, dtype="date32[pyarrow]")
>>> ser_pl = pl.Series(data)
>>> ser_pa = pa.chunked_array([data])
>>> nw.from_native(ser_pd, series_only=True).dtype
Date
>>> nw.from_native(ser_pl, series_only=True).dtype
Date
>>> nw.from_native(ser_pa, series_only=True).dtype
Date

Datetime

Data type representing a calendar date and time of day.

Parameters:

Name Type Description Default
time_unit Literal['us', 'ns', 'ms', 's']

Unit of time. Defaults to 'us' (microseconds).

'us'
time_zone str | timezone | None

Time zone string, as defined in zoneinfo (to see valid strings run import zoneinfo; zoneinfo.available_timezones() for a full list).

None
Notes

Adapted from Polars implementation

Examples:

>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import pyarrow.compute as pc
>>> import narwhals as nw
>>> from datetime import datetime, timedelta
>>> data = [datetime(2024, 12, 9) + timedelta(days=n) for n in range(5)]
>>> ser_pd = (
...     pd.Series(data)
...     .dt.tz_localize("Africa/Accra")
...     .astype("datetime64[ms, Africa/Accra]")
... )
>>> ser_pl = (
...     pl.Series(data).cast(pl.Datetime("ms")).dt.replace_time_zone("Africa/Accra")
... )
>>> ser_pa = pc.assume_timezone(
...     pa.chunked_array([data], type=pa.timestamp("ms")), "Africa/Accra"
... )
>>> nw.from_native(ser_pd, series_only=True).dtype
Datetime(time_unit='ms', time_zone='Africa/Accra')
>>> nw.from_native(ser_pl, series_only=True).dtype
Datetime(time_unit='ms', time_zone='Africa/Accra')
>>> nw.from_native(ser_pa, series_only=True).dtype
Datetime(time_unit='ms', time_zone='Africa/Accra')

Duration

Data type representing a time duration.

Parameters:

Name Type Description Default
time_unit Literal['us', 'ns', 'ms', 's']

Unit of time. Defaults to 'us' (microseconds).

'us'
Notes

Adapted from Polars implementation

Examples:

>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> from datetime import timedelta
>>> data = [timedelta(seconds=d) for d in range(1, 4)]
>>> ser_pd = pd.Series(data).astype("timedelta64[ms]")
>>> ser_pl = pl.Series(data).cast(pl.Duration("ms"))
>>> ser_pa = pa.chunked_array([data], type=pa.duration("ms"))
>>> nw.from_native(ser_pd, series_only=True).dtype
Duration(time_unit='ms')
>>> nw.from_native(ser_pl, series_only=True).dtype
Duration(time_unit='ms')
>>> nw.from_native(ser_pa, series_only=True).dtype
Duration(time_unit='ms')

Object

Data type for wrapping arbitrary Python objects.

Examples:

>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> class Foo: ...
>>> ser_pd = pd.Series([Foo(), Foo()])
>>> ser_pl = pl.Series([Foo(), Foo()])
>>> nw.from_native(ser_pd, series_only=True).dtype
Object
>>> nw.from_native(ser_pl, series_only=True).dtype
Object

Unknown

Type representing DataType values that could not be determined statically.

Examples:

>>> import pandas as pd
>>> import narwhals as nw
>>> data = pd.period_range("2000-01", periods=4, freq="M")
>>> ser_pd = pd.Series(data)
>>> nw.from_native(ser_pd, series_only=True).dtype
Unknown