Skip to content

narwhals.Expr.dt

convert_time_zone(time_zone: str) -> ExprT

Convert to a new time zone.

If converting from a time-zone-naive column, then conversion happens as if converting from UTC.

Parameters:

Name Type Description Default
time_zone str

Target time zone.

required

Returns:

Type Description
ExprT

A new expression.

Examples:

>>> from datetime import datetime, timezone
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame(
...     {
...         "a": [
...             datetime(2024, 1, 1, tzinfo=timezone.utc),
...             datetime(2024, 1, 2, tzinfo=timezone.utc),
...         ]
...     }
... )
>>> df = nw.from_native(df_native)
>>> df.select(nw.col("a").dt.convert_time_zone("Asia/Kathmandu")).to_native()
                          a
0 2024-01-01 05:45:00+05:45
1 2024-01-02 05:45:00+05:45

date() -> ExprT

Extract the date from underlying DateTime representation.

Returns:

Type Description
ExprT

A new expression.

Raises:

Type Description
NotImplementedError

If pandas default backend is being used.

Examples:

>>> from datetime import datetime
>>> import polars as pl
>>> import narwhals as nw
>>> df_native = pl.DataFrame(
...     {"a": [datetime(2012, 1, 7, 10), datetime(2027, 12, 13)]}
... )
>>> df = nw.from_native(df_native)
>>> df.select(nw.col("a").dt.date()).to_native()
shape: (2, 1)
┌────────────┐
│ a          │
│ ---        │
│ date       │
╞════════════╡
│ 2012-01-07 │
│ 2027-12-13 │
└────────────┘

day() -> ExprT

Extract day from underlying DateTime representation.

Returns the day of month starting from 1. The return value ranges from 1 to 31. (The last day of month differs by months.)

Returns:

Type Description
ExprT

A new expression.

Examples:

>>> from datetime import datetime
>>> import pyarrow as pa
>>> import narwhals as nw
>>> df_native = pa.table({"a": [datetime(1978, 6, 1), datetime(2065, 1, 1)]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(nw.col("a").dt.day().alias("day")).to_native()
pyarrow.Table
a: timestamp[us]
day: int64
----
a: [[1978-06-01 00:00:00.000000,2065-01-01 00:00:00.000000]]
day: [[1,1]]

hour() -> ExprT

Extract hour from underlying DateTime representation.

Returns the hour number from 0 to 23.

Returns:

Type Description
ExprT

A new expression.

Examples:

>>> from datetime import datetime
>>> import polars as pl
>>> import narwhals as nw
>>> df_native = pl.DataFrame(
...     {"a": [datetime(1978, 1, 1, 1), datetime(2065, 1, 1, 10)]}
... )
>>> df = nw.from_native(df_native)
>>> df.with_columns(nw.col("a").dt.hour().alias("hour"))
┌──────────────────────────────┐
|      Narwhals DataFrame      |
|------------------------------|
|shape: (2, 2)                 |
|┌─────────────────────┬──────┐|
|│ a                   ┆ hour │|
|│ ---                 ┆ ---  │|
|│ datetime[μs]        ┆ i8   │|
|╞═════════════════════╪══════╡|
|│ 1978-01-01 01:00:00 ┆ 1    │|
|│ 2065-01-01 10:00:00 ┆ 10   │|
|└─────────────────────┴──────┘|
└──────────────────────────────┘

microsecond() -> ExprT

Extract microseconds from underlying DateTime representation.

Returns:

Type Description
ExprT

A new expression.

Examples:

>>> from datetime import datetime
>>> import pyarrow as pa
>>> import narwhals as nw
>>> df_native = pa.table(
...     {
...         "a": [
...             datetime(1978, 1, 1, 1, 1, 1, 0),
...             datetime(2065, 1, 1, 10, 20, 30, 67000),
...         ]
...     }
... )
>>> df = nw.from_native(df_native)
>>> df.with_columns(
...     nw.col("a").dt.microsecond().alias("microsecond")
... ).to_native()
pyarrow.Table
a: timestamp[us]
microsecond: int64
----
a: [[1978-01-01 01:01:01.000000,2065-01-01 10:20:30.067000]]
microsecond: [[0,67000]]

millisecond() -> ExprT

Extract milliseconds from underlying DateTime representation.

Returns:

Type Description
ExprT

A new expression.

Examples:

>>> from datetime import datetime
>>> import pyarrow as pa
>>> import narwhals as nw
>>> df_native = pa.table(
...     {
...         "a": [
...             datetime(1978, 1, 1, 1, 1, 1, 0),
...             datetime(2065, 1, 1, 10, 20, 30, 67000),
...         ]
...     }
... )
>>> df = nw.from_native(df_native)
>>> df.with_columns(
...     nw.col("a").dt.millisecond().alias("millisecond")
... ).to_native()
pyarrow.Table
a: timestamp[us]
millisecond: int64
----
a: [[1978-01-01 01:01:01.000000,2065-01-01 10:20:30.067000]]
millisecond: [[0,67]]

minute() -> ExprT

Extract minutes from underlying DateTime representation.

Returns the minute number from 0 to 59.

Returns:

Type Description
ExprT

A new expression.

Examples:

>>> from datetime import datetime
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame(
...     {"a": [datetime(1978, 1, 1, 1, 1), datetime(2065, 1, 1, 10, 20)]}
... )
>>> df = nw.from_native(df_native)
>>> df.with_columns(nw.col("a").dt.minute().alias("minute")).to_native()
                    a  minute
0 1978-01-01 01:01:00       1
1 2065-01-01 10:20:00      20

month() -> ExprT

Extract month from underlying DateTime representation.

Returns the month number starting from 1. The return value ranges from 1 to 12.

Returns:

Type Description
ExprT

A new expression.

Examples:

>>> from datetime import datetime
>>> import pyarrow as pa
>>> import narwhals as nw
>>> df_native = pa.table({"a": [datetime(1978, 6, 1), datetime(2065, 1, 1)]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(nw.col("a").dt.month().alias("month")).to_native()
pyarrow.Table
a: timestamp[us]
month: int64
----
a: [[1978-06-01 00:00:00.000000,2065-01-01 00:00:00.000000]]
month: [[6,1]]

nanosecond() -> ExprT

Extract Nanoseconds from underlying DateTime representation.

Returns:

Type Description
ExprT

A new expression.

Examples:

>>> from datetime import datetime
>>> import pyarrow as pa
>>> import narwhals as nw
>>> df_native = pa.table(
...     {
...         "a": [
...             datetime(1978, 1, 1, 1, 1, 1, 0),
...             datetime(2065, 1, 1, 10, 20, 30, 67000),
...         ]
...     }
... )
>>> df = nw.from_native(df_native)
>>> df.with_columns(
...     nw.col("a").dt.nanosecond().alias("nanosecond")
... ).to_native()
pyarrow.Table
a: timestamp[us]
nanosecond: int64
----
a: [[1978-01-01 01:01:01.000000,2065-01-01 10:20:30.067000]]
nanosecond: [[0,67000000]]

ordinal_day() -> ExprT

Get ordinal day.

Returns:

Type Description
ExprT

A new expression.

Examples:

>>> from datetime import datetime
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame(
...     {"a": [datetime(2020, 1, 1), datetime(2020, 8, 3)]}
... )
>>> df = nw.from_native(df_native)
>>> df.with_columns(a_ordinal_day=nw.col("a").dt.ordinal_day())
┌───────────────────────────┐
|    Narwhals DataFrame     |
|---------------------------|
|           a  a_ordinal_day|
|0 2020-01-01              1|
|1 2020-08-03            216|
└───────────────────────────┘

replace_time_zone(time_zone: str | None) -> ExprT

Replace time zone.

Parameters:

Name Type Description Default
time_zone str | None

Target time zone.

required

Returns:

Type Description
ExprT

A new expression.

Examples:

>>> from datetime import datetime, timezone
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame(
...     {
...         "a": [
...             datetime(2024, 1, 1, tzinfo=timezone.utc),
...             datetime(2024, 1, 2, tzinfo=timezone.utc),
...         ]
...     }
... )
>>> df = nw.from_native(df_native)
>>> df.select(nw.col("a").dt.replace_time_zone("Asia/Kathmandu")).to_native()
                          a
0 2024-01-01 00:00:00+05:45
1 2024-01-02 00:00:00+05:45

second() -> ExprT

Extract seconds from underlying DateTime representation.

Returns:

Type Description
ExprT

A new expression.

Examples:

>>> from datetime import datetime
>>> import pyarrow as pa
>>> import narwhals as nw
>>> df_native = pa.table(
...     {
...         "a": [
...             datetime(1978, 1, 1, 1, 1, 1),
...             datetime(2065, 1, 1, 10, 20, 30),
...         ]
...     }
... )
>>> df = nw.from_native(df_native)
>>> df.with_columns(nw.col("a").dt.second().alias("second")).to_native()
pyarrow.Table
a: timestamp[us]
second: int64
----
a: [[1978-01-01 01:01:01.000000,2065-01-01 10:20:30.000000]]
second: [[1,30]]

timestamp(time_unit: TimeUnit = 'us') -> ExprT

Return a timestamp in the given time unit.

Parameters:

Name Type Description Default
time_unit TimeUnit

{'ns', 'us', 'ms'} Time unit.

'us'

Returns:

Type Description
ExprT

A new expression.

Examples:

>>> from datetime import date
>>> import polars as pl
>>> import narwhals as nw
>>> df_native = pl.DataFrame({"date": [date(2001, 1, 1), None]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(nw.col("date").dt.timestamp("ms").alias("timestamp_ms"))
┌─────────────────────────────┐
|     Narwhals DataFrame      |
|-----------------------------|
|shape: (2, 2)                |
|┌────────────┬──────────────┐|
|│ date       ┆ timestamp_ms │|
|│ ---        ┆ ---          │|
|│ date       ┆ i64          │|
|╞════════════╪══════════════╡|
|│ 2001-01-01 ┆ 978307200000 │|
|│ null       ┆ null         │|
|└────────────┴──────────────┘|
└─────────────────────────────┘

total_microseconds() -> ExprT

Get total microseconds.

Returns:

Type Description
ExprT

A new expression.

Notes

The function outputs the total microseconds in the int dtype by default, however, pandas may change the dtype to float when there are missing values, consider using fill_null() and cast in this case.

Examples:

>>> from datetime import timedelta
>>> import pyarrow as pa
>>> import narwhals as nw
>>> df_native = pa.table(
...     {
...         "a": [
...             timedelta(microseconds=10),
...             timedelta(milliseconds=1, microseconds=200),
...         ]
...     }
... )
>>> df = nw.from_native(df_native)
>>> df.with_columns(
...     a_total_microseconds=nw.col("a").dt.total_microseconds()
... ).to_native()
pyarrow.Table
a: duration[us]
a_total_microseconds: int64
----
a: [[10,1200]]
a_total_microseconds: [[10,1200]]

total_milliseconds() -> ExprT

Get total milliseconds.

Returns:

Type Description
ExprT

A new expression.

Notes

The function outputs the total milliseconds in the int dtype by default, however, pandas may change the dtype to float when there are missing values, consider using fill_null() and cast in this case.

Examples:

>>> from datetime import timedelta
>>> import polars as pl
>>> import narwhals as nw
>>> df_native = pl.DataFrame(
...     {
...         "a": [
...             timedelta(milliseconds=10),
...             timedelta(milliseconds=20, microseconds=40),
...         ]
...     }
... )
>>> df = nw.from_native(df_native)
>>> df.with_columns(
...     a_total_milliseconds=nw.col("a").dt.total_milliseconds()
... ).to_native()
shape: (2, 2)
┌──────────────┬──────────────────────┐
│ a            ┆ a_total_milliseconds │
│ ---          ┆ ---                  │
│ duration[μs] ┆ i64                  │
╞══════════════╪══════════════════════╡
│ 10ms         ┆ 10                   │
│ 20040µs      ┆ 20                   │
└──────────────┴──────────────────────┘

total_minutes() -> ExprT

Get total minutes.

Returns:

Type Description
ExprT

A new expression.

Notes

The function outputs the total minutes in the int dtype by default, however, pandas may change the dtype to float when there are missing values, consider using fill_null() and cast in this case.

Examples:

>>> from datetime import timedelta
>>> import polars as pl
>>> import narwhals as nw
>>> df_native = pl.DataFrame(
...     {"a": [timedelta(minutes=10), timedelta(minutes=20, seconds=40)]}
... )
>>> df = nw.from_native(df_native)
>>> df.with_columns(
...     a_total_minutes=nw.col("a").dt.total_minutes()
... ).to_native()
shape: (2, 2)
┌──────────────┬─────────────────┐
│ a            ┆ a_total_minutes │
│ ---          ┆ ---             │
│ duration[μs] ┆ i64             │
╞══════════════╪═════════════════╡
│ 10m          ┆ 10              │
│ 20m 40s      ┆ 20              │
└──────────────┴─────────────────┘

total_nanoseconds() -> ExprT

Get total nanoseconds.

Returns:

Type Description
ExprT

A new expression.

Notes

The function outputs the total nanoseconds in the int dtype by default, however, pandas may change the dtype to float when there are missing values, consider using fill_null() and cast in this case.

Examples:

>>> from datetime import timedelta
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame(
...     {
...         "a": pd.to_datetime(
...             [
...                 "2024-01-01 00:00:00.000000001",
...                 "2024-01-01 00:00:00.000000002",
...             ]
...         )
...     }
... )
>>> df = nw.from_native(df_native)
>>> df.with_columns(
...     a_diff_total_nanoseconds=nw.col("a").diff().dt.total_nanoseconds()
... ).to_native()
                              a  a_diff_total_nanoseconds
0 2024-01-01 00:00:00.000000001                       NaN
1 2024-01-01 00:00:00.000000002                       1.0

total_seconds() -> ExprT

Get total seconds.

Returns:

Type Description
ExprT

A new expression.

Notes

The function outputs the total seconds in the int dtype by default, however, pandas may change the dtype to float when there are missing values, consider using fill_null() and cast in this case.

Examples:

>>> from datetime import timedelta
>>> import polars as pl
>>> import narwhals as nw
>>> df_native = pl.DataFrame(
...     {"a": [timedelta(seconds=10), timedelta(seconds=20, milliseconds=40)]}
... )
>>> df = nw.from_native(df_native)
>>> df.with_columns(
...     a_total_seconds=nw.col("a").dt.total_seconds()
... ).to_native()
shape: (2, 2)
┌──────────────┬─────────────────┐
│ a            ┆ a_total_seconds │
│ ---          ┆ ---             │
│ duration[μs] ┆ i64             │
╞══════════════╪═════════════════╡
│ 10s          ┆ 10              │
│ 20s 40ms     ┆ 20              │
└──────────────┴─────────────────┘

to_string(format: str) -> ExprT

Convert a Date/Time/Datetime column into a String column with the given format.

Parameters:

Name Type Description Default
format str

Format to format temporal column with.

required

Returns:

Type Description
ExprT

A new expression.

Notes

Unfortunately, different libraries interpret format directives a bit differently.

  • Chrono, the library used by Polars, uses "%.f" for fractional seconds, whereas pandas and Python stdlib use ".%f".
  • PyArrow interprets "%S" as "seconds, including fractional seconds" whereas most other tools interpret it as "just seconds, as 2 digits".

Therefore, we make the following adjustments:

  • for pandas-like libraries, we replace "%S.%f" with "%S%.f".
  • for PyArrow, we replace "%S.%f" with "%S".

Workarounds like these don't make us happy, and we try to avoid them as much as possible, but here we feel like it's the best compromise.

If you just want to format a date/datetime Series as a local datetime string, and have it work as consistently as possible across libraries, we suggest using:

  • "%Y-%m-%dT%H:%M:%S%.f" for datetimes
  • "%Y-%m-%d" for dates

though note that, even then, different tools may return a different number of trailing zeros. Nonetheless, this is probably consistent enough for most applications.

If you have an application where this is not enough, please open an issue and let us know.

Examples:

>>> from datetime import datetime
>>> import polars as pl
>>> import narwhals as nw
>>> df_native = pl.DataFrame(
...     {
...         "a": [
...             datetime(2020, 3, 1),
...             datetime(2020, 5, 1),
...         ]
...     }
... )
>>> df = nw.from_native(df_native)
>>> df.select(nw.col("a").dt.to_string("%Y/%m/%d %H:%M:%S"))
┌───────────────────────┐
|  Narwhals DataFrame   |
|-----------------------|
|shape: (2, 1)          |
|┌─────────────────────┐|
|│ a                   │|
|│ ---                 │|
|│ str                 │|
|╞═════════════════════╡|
|│ 2020/03/01 00:00:00 │|
|│ 2020/05/01 00:00:00 │|
|└─────────────────────┘|
└───────────────────────┘

weekday() -> ExprT

Extract the week day from the underlying Date representation.

Returns:

Type Description
ExprT

Returns the ISO weekday number where monday = 1 and sunday = 7

Examples:

>>> from datetime import datetime
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame(
...     {"a": [datetime(2020, 1, 1), datetime(2020, 8, 3)]}
... )
>>> df = nw.from_native(df_native)
>>> df.with_columns(a_week_day=nw.col("a").dt.weekday())
┌────────────────────────┐
|   Narwhals DataFrame   |
|------------------------|
|           a  a_week_day|
|0 2020-01-01           3|
|1 2020-08-03           1|
└────────────────────────┘

year() -> ExprT

Extract year from underlying DateTime representation.

Returns the year number in the calendar date.

Returns:

Type Description
ExprT

A new expression.

Examples:

>>> from datetime import datetime
>>> import pandas as pd
>>> import narwhals as nw
>>> df_native = pd.DataFrame(
...     {"a": [datetime(1978, 6, 1), datetime(2065, 1, 1)]}
... )
>>> df = nw.from_native(df_native)
>>> df.with_columns(nw.col("a").dt.year().alias("year"))
┌──────────────────┐
|Narwhals DataFrame|
|------------------|
|           a  year|
|0 1978-06-01  1978|
|1 2065-01-01  2065|
└──────────────────┘