narwhals.Expr.dt
convert_time_zone(time_zone)
Convert to a new time zone.
If converting from a time-zone-naive column, then conversion happens as if converting from UTC.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
time_zone
|
str
|
Target time zone. |
required |
Returns:
Type | Description |
---|---|
ExprT
|
A new expression. |
Examples:
>>> from datetime import datetime, timezone
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> data = {
... "a": [
... datetime(2024, 1, 1, tzinfo=timezone.utc),
... datetime(2024, 1, 2, tzinfo=timezone.utc),
... ]
... }
>>> df_pd = pd.DataFrame(data)
>>> df_pl = pl.DataFrame(data)
>>> df_pa = pa.table(data)
Let's define a dataframe-agnostic function:
>>> def my_library_agnostic_function(df_native: IntoFrameT) -> IntoFrameT:
... df = nw.from_native(df_native)
... return df.select(
... nw.col("a").dt.convert_time_zone("Asia/Kathmandu")
... ).to_native()
We can then pass pandas / PyArrow / Polars / any other supported library:
>>> my_library_agnostic_function(df_pd)
a
0 2024-01-01 05:45:00+05:45
1 2024-01-02 05:45:00+05:45
>>> my_library_agnostic_function(df_pl)
shape: (2, 1)
┌──────────────────────────────┐
│ a │
│ --- │
│ datetime[μs, Asia/Kathmandu] │
╞══════════════════════════════╡
│ 2024-01-01 05:45:00 +0545 │
│ 2024-01-02 05:45:00 +0545 │
└──────────────────────────────┘
>>> my_library_agnostic_function(df_pa)
pyarrow.Table
a: timestamp[us, tz=Asia/Kathmandu]
----
a: [[2024-01-01 00:00:00.000000Z,2024-01-02 00:00:00.000000Z]]
date()
Extract the date from underlying DateTime representation.
Returns:
Type | Description |
---|---|
ExprT
|
A new expression. |
Raises:
Type | Description |
---|---|
NotImplementedError
|
If pandas default backend is being used. |
Examples:
>>> import pandas as pd
>>> import polars as pl
>>> from datetime import datetime
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>> data = {"a": [datetime(2012, 1, 7, 10, 20), datetime(2023, 3, 10, 11, 32)]}
>>> df_pd = pd.DataFrame(data).convert_dtypes(dtype_backend="pyarrow")
>>> df_pl = pl.DataFrame(data)
We define a library agnostic function:
>>> def my_library_agnostic_function(df_native: IntoFrameT) -> IntoFrameT:
... df = nw.from_native(df_native)
... return df.select(nw.col("a").dt.date()).to_native()
We can then pass either pandas or Polars to func
:
>>> my_library_agnostic_function(df_pd)
a
0 2012-01-07
1 2023-03-10
>>> my_library_agnostic_function(df_pl) # docetst
shape: (2, 1)
┌────────────┐
│ a │
│ --- │
│ date │
╞════════════╡
│ 2012-01-07 │
│ 2023-03-10 │
└────────────┘
day()
Extract day from underlying DateTime representation.
Returns the day of month starting from 1. The return value ranges from 1 to 31. (The last day of month differs by months.)
Returns:
Type | Description |
---|---|
ExprT
|
A new expression. |
Examples:
>>> import pandas as pd
>>> import polars as pl
>>> from datetime import datetime
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>> data = {
... "datetime": [
... datetime(1978, 6, 1),
... datetime(2024, 12, 13),
... datetime(2065, 1, 1),
... ]
... }
>>> df_pd = pd.DataFrame(data)
>>> df_pl = pl.DataFrame(data)
We define a dataframe-agnostic function:
>>> def my_library_agnostic_function(df_native: IntoFrameT) -> IntoFrameT:
... df = nw.from_native(df_native)
... return df.with_columns(
... nw.col("datetime").dt.year().alias("year"),
... nw.col("datetime").dt.month().alias("month"),
... nw.col("datetime").dt.day().alias("day"),
... ).to_native()
We can then pass either pandas or Polars to func
:
>>> my_library_agnostic_function(df_pd)
datetime year month day
0 1978-06-01 1978 6 1
1 2024-12-13 2024 12 13
2 2065-01-01 2065 1 1
>>> my_library_agnostic_function(df_pl)
shape: (3, 4)
┌─────────────────────┬──────┬───────┬─────┐
│ datetime ┆ year ┆ month ┆ day │
│ --- ┆ --- ┆ --- ┆ --- │
│ datetime[μs] ┆ i32 ┆ i8 ┆ i8 │
╞═════════════════════╪══════╪═══════╪═════╡
│ 1978-06-01 00:00:00 ┆ 1978 ┆ 6 ┆ 1 │
│ 2024-12-13 00:00:00 ┆ 2024 ┆ 12 ┆ 13 │
│ 2065-01-01 00:00:00 ┆ 2065 ┆ 1 ┆ 1 │
└─────────────────────┴──────┴───────┴─────┘
hour()
Extract hour from underlying DateTime representation.
Returns the hour number from 0 to 23.
Returns:
Type | Description |
---|---|
ExprT
|
A new expression. |
Examples:
>>> import pandas as pd
>>> import polars as pl
>>> from datetime import datetime
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>> data = {
... "datetime": [
... datetime(1978, 1, 1, 1),
... datetime(2024, 10, 13, 5),
... datetime(2065, 1, 1, 10),
... ]
... }
>>> df_pd = pd.DataFrame(data)
>>> df_pl = pl.DataFrame(data)
We define a dataframe-agnostic function:
>>> def my_library_agnostic_function(df_native: IntoFrameT) -> IntoFrameT:
... df = nw.from_native(df_native)
... return df.with_columns(
... nw.col("datetime").dt.hour().alias("hour")
... ).to_native()
We can then pass either pandas or Polars to func
:
>>> my_library_agnostic_function(df_pd)
datetime hour
0 1978-01-01 01:00:00 1
1 2024-10-13 05:00:00 5
2 2065-01-01 10:00:00 10
>>> my_library_agnostic_function(df_pl)
shape: (3, 2)
┌─────────────────────┬──────┐
│ datetime ┆ hour │
│ --- ┆ --- │
│ datetime[μs] ┆ i8 │
╞═════════════════════╪══════╡
│ 1978-01-01 01:00:00 ┆ 1 │
│ 2024-10-13 05:00:00 ┆ 5 │
│ 2065-01-01 10:00:00 ┆ 10 │
└─────────────────────┴──────┘
microsecond()
Extract microseconds from underlying DateTime representation.
Returns:
Type | Description |
---|---|
ExprT
|
A new expression. |
Examples:
>>> import pandas as pd
>>> import polars as pl
>>> from datetime import datetime
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>> data = {
... "datetime": [
... datetime(1978, 1, 1, 1, 1, 1, 0),
... datetime(2024, 10, 13, 5, 30, 14, 505000),
... datetime(2065, 1, 1, 10, 20, 30, 67000),
... ]
... }
>>> df_pd = pd.DataFrame(data)
>>> df_pl = pl.DataFrame(data)
We define a dataframe-agnostic function:
>>> def my_library_agnostic_function(df_native: IntoFrameT) -> IntoFrameT:
... df = nw.from_native(df_native)
... return df.with_columns(
... nw.col("datetime").dt.hour().alias("hour"),
... nw.col("datetime").dt.minute().alias("minute"),
... nw.col("datetime").dt.second().alias("second"),
... nw.col("datetime").dt.microsecond().alias("microsecond"),
... ).to_native()
We can then pass either pandas or Polars to func
:
>>> my_library_agnostic_function(df_pd)
datetime hour minute second microsecond
0 1978-01-01 01:01:01.000 1 1 1 0
1 2024-10-13 05:30:14.505 5 30 14 505000
2 2065-01-01 10:20:30.067 10 20 30 67000
>>> my_library_agnostic_function(df_pl)
shape: (3, 5)
┌─────────────────────────┬──────┬────────┬────────┬─────────────┐
│ datetime ┆ hour ┆ minute ┆ second ┆ microsecond │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ datetime[μs] ┆ i8 ┆ i8 ┆ i8 ┆ i32 │
╞═════════════════════════╪══════╪════════╪════════╪═════════════╡
│ 1978-01-01 01:01:01 ┆ 1 ┆ 1 ┆ 1 ┆ 0 │
│ 2024-10-13 05:30:14.505 ┆ 5 ┆ 30 ┆ 14 ┆ 505000 │
│ 2065-01-01 10:20:30.067 ┆ 10 ┆ 20 ┆ 30 ┆ 67000 │
└─────────────────────────┴──────┴────────┴────────┴─────────────┘
millisecond()
Extract milliseconds from underlying DateTime representation.
Returns:
Type | Description |
---|---|
ExprT
|
A new expression. |
Examples:
>>> import pandas as pd
>>> import polars as pl
>>> from datetime import datetime
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>> data = {
... "datetime": [
... datetime(1978, 1, 1, 1, 1, 1, 0),
... datetime(2024, 10, 13, 5, 30, 14, 505000),
... datetime(2065, 1, 1, 10, 20, 30, 67000),
... ]
... }
>>> df_pd = pd.DataFrame(data)
>>> df_pl = pl.DataFrame(data)
We define a dataframe-agnostic function:
>>> def my_library_agnostic_function(df_native: IntoFrameT) -> IntoFrameT:
... df = nw.from_native(df_native)
... return df.with_columns(
... nw.col("datetime").dt.hour().alias("hour"),
... nw.col("datetime").dt.minute().alias("minute"),
... nw.col("datetime").dt.second().alias("second"),
... nw.col("datetime").dt.millisecond().alias("millisecond"),
... ).to_native()
We can then pass either pandas or Polars to func
:
>>> my_library_agnostic_function(df_pd)
datetime hour minute second millisecond
0 1978-01-01 01:01:01.000 1 1 1 0
1 2024-10-13 05:30:14.505 5 30 14 505
2 2065-01-01 10:20:30.067 10 20 30 67
>>> my_library_agnostic_function(df_pl)
shape: (3, 5)
┌─────────────────────────┬──────┬────────┬────────┬─────────────┐
│ datetime ┆ hour ┆ minute ┆ second ┆ millisecond │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ datetime[μs] ┆ i8 ┆ i8 ┆ i8 ┆ i32 │
╞═════════════════════════╪══════╪════════╪════════╪═════════════╡
│ 1978-01-01 01:01:01 ┆ 1 ┆ 1 ┆ 1 ┆ 0 │
│ 2024-10-13 05:30:14.505 ┆ 5 ┆ 30 ┆ 14 ┆ 505 │
│ 2065-01-01 10:20:30.067 ┆ 10 ┆ 20 ┆ 30 ┆ 67 │
└─────────────────────────┴──────┴────────┴────────┴─────────────┘
minute()
Extract minutes from underlying DateTime representation.
Returns the minute number from 0 to 59.
Returns:
Type | Description |
---|---|
ExprT
|
A new expression. |
Examples:
>>> import pandas as pd
>>> import polars as pl
>>> from datetime import datetime
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>> data = {
... "datetime": [
... datetime(1978, 1, 1, 1, 1),
... datetime(2024, 10, 13, 5, 30),
... datetime(2065, 1, 1, 10, 20),
... ]
... }
>>> df_pd = pd.DataFrame(data)
>>> df_pl = pl.DataFrame(data)
We define a dataframe-agnostic function:
>>> def my_library_agnostic_function(df_native: IntoFrameT) -> IntoFrameT:
... df = nw.from_native(df_native)
... return df.with_columns(
... nw.col("datetime").dt.hour().alias("hour"),
... nw.col("datetime").dt.minute().alias("minute"),
... ).to_native()
We can then pass either pandas or Polars to func
:
>>> my_library_agnostic_function(df_pd)
datetime hour minute
0 1978-01-01 01:01:00 1 1
1 2024-10-13 05:30:00 5 30
2 2065-01-01 10:20:00 10 20
>>> my_library_agnostic_function(df_pl)
shape: (3, 3)
┌─────────────────────┬──────┬────────┐
│ datetime ┆ hour ┆ minute │
│ --- ┆ --- ┆ --- │
│ datetime[μs] ┆ i8 ┆ i8 │
╞═════════════════════╪══════╪════════╡
│ 1978-01-01 01:01:00 ┆ 1 ┆ 1 │
│ 2024-10-13 05:30:00 ┆ 5 ┆ 30 │
│ 2065-01-01 10:20:00 ┆ 10 ┆ 20 │
└─────────────────────┴──────┴────────┘
month()
Extract month from underlying DateTime representation.
Returns the month number starting from 1. The return value ranges from 1 to 12.
Returns:
Type | Description |
---|---|
ExprT
|
A new expression. |
Examples:
>>> import pandas as pd
>>> import polars as pl
>>> from datetime import datetime
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>> data = {
... "datetime": [
... datetime(1978, 6, 1),
... datetime(2024, 12, 13),
... datetime(2065, 1, 1),
... ]
... }
>>> df_pd = pd.DataFrame(data)
>>> df_pl = pl.DataFrame(data)
We define a dataframe-agnostic function:
>>> def my_library_agnostic_function(df_native: IntoFrameT) -> IntoFrameT:
... df = nw.from_native(df_native)
... return df.with_columns(
... nw.col("datetime").dt.year().alias("year"),
... nw.col("datetime").dt.month().alias("month"),
... ).to_native()
We can then pass either pandas or Polars to func
:
>>> my_library_agnostic_function(df_pd)
datetime year month
0 1978-06-01 1978 6
1 2024-12-13 2024 12
2 2065-01-01 2065 1
>>> my_library_agnostic_function(df_pl)
shape: (3, 3)
┌─────────────────────┬──────┬───────┐
│ datetime ┆ year ┆ month │
│ --- ┆ --- ┆ --- │
│ datetime[μs] ┆ i32 ┆ i8 │
╞═════════════════════╪══════╪═══════╡
│ 1978-06-01 00:00:00 ┆ 1978 ┆ 6 │
│ 2024-12-13 00:00:00 ┆ 2024 ┆ 12 │
│ 2065-01-01 00:00:00 ┆ 2065 ┆ 1 │
└─────────────────────┴──────┴───────┘
nanosecond()
Extract Nanoseconds from underlying DateTime representation.
Returns:
Type | Description |
---|---|
ExprT
|
A new expression. |
Examples:
>>> import pandas as pd
>>> import polars as pl
>>> from datetime import datetime
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>> data = {
... "datetime": [
... datetime(1978, 1, 1, 1, 1, 1, 0),
... datetime(2024, 10, 13, 5, 30, 14, 500000),
... datetime(2065, 1, 1, 10, 20, 30, 60000),
... ]
... }
>>> df_pd = pd.DataFrame(data)
>>> df_pl = pl.DataFrame(data)
We define a dataframe-agnostic function:
>>> def my_library_agnostic_function(df_native: IntoFrameT) -> IntoFrameT:
... df = nw.from_native(df_native)
... return df.with_columns(
... nw.col("datetime").dt.hour().alias("hour"),
... nw.col("datetime").dt.minute().alias("minute"),
... nw.col("datetime").dt.second().alias("second"),
... nw.col("datetime").dt.nanosecond().alias("nanosecond"),
... ).to_native()
We can then pass either pandas or Polars to func
:
>>> my_library_agnostic_function(df_pd)
datetime hour minute second nanosecond
0 1978-01-01 01:01:01.000 1 1 1 0
1 2024-10-13 05:30:14.500 5 30 14 500000000
2 2065-01-01 10:20:30.060 10 20 30 60000000
>>> my_library_agnostic_function(df_pl)
shape: (3, 5)
┌─────────────────────────┬──────┬────────┬────────┬────────────┐
│ datetime ┆ hour ┆ minute ┆ second ┆ nanosecond │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ datetime[μs] ┆ i8 ┆ i8 ┆ i8 ┆ i32 │
╞═════════════════════════╪══════╪════════╪════════╪════════════╡
│ 1978-01-01 01:01:01 ┆ 1 ┆ 1 ┆ 1 ┆ 0 │
│ 2024-10-13 05:30:14.500 ┆ 5 ┆ 30 ┆ 14 ┆ 500000000 │
│ 2065-01-01 10:20:30.060 ┆ 10 ┆ 20 ┆ 30 ┆ 60000000 │
└─────────────────────────┴──────┴────────┴────────┴────────────┘
ordinal_day()
Get ordinal day.
Returns:
Type | Description |
---|---|
ExprT
|
A new expression. |
Examples:
>>> import pandas as pd
>>> import polars as pl
>>> from datetime import datetime
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>> data = {"a": [datetime(2020, 1, 1), datetime(2020, 8, 3)]}
>>> df_pd = pd.DataFrame(data)
>>> df_pl = pl.DataFrame(data)
We define a dataframe-agnostic function:
>>> def my_library_agnostic_function(df_native: IntoFrameT) -> IntoFrameT:
... df = nw.from_native(df_native)
... return df.with_columns(
... a_ordinal_day=nw.col("a").dt.ordinal_day()
... ).to_native()
We can then pass either pandas or Polars to func
:
>>> my_library_agnostic_function(df_pd)
a a_ordinal_day
0 2020-01-01 1
1 2020-08-03 216
>>> my_library_agnostic_function(df_pl)
shape: (2, 2)
┌─────────────────────┬───────────────┐
│ a ┆ a_ordinal_day │
│ --- ┆ --- │
│ datetime[μs] ┆ i16 │
╞═════════════════════╪═══════════════╡
│ 2020-01-01 00:00:00 ┆ 1 │
│ 2020-08-03 00:00:00 ┆ 216 │
└─────────────────────┴───────────────┘
replace_time_zone(time_zone)
Replace time zone.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
time_zone
|
str | None
|
Target time zone. |
required |
Returns:
Type | Description |
---|---|
ExprT
|
A new expression. |
Examples:
>>> from datetime import datetime, timezone
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> data = {
... "a": [
... datetime(2024, 1, 1, tzinfo=timezone.utc),
... datetime(2024, 1, 2, tzinfo=timezone.utc),
... ]
... }
>>> df_pd = pd.DataFrame(data)
>>> df_pl = pl.DataFrame(data)
>>> df_pa = pa.table(data)
Let's define a dataframe-agnostic function:
>>> def my_library_agnostic_function(df_native: IntoFrameT) -> IntoFrameT:
... df = nw.from_native(df_native)
... return df.select(
... nw.col("a").dt.replace_time_zone("Asia/Kathmandu")
... ).to_native()
We can then pass pandas / PyArrow / Polars / any other supported library:
>>> my_library_agnostic_function(df_pd)
a
0 2024-01-01 00:00:00+05:45
1 2024-01-02 00:00:00+05:45
>>> my_library_agnostic_function(df_pl)
shape: (2, 1)
┌──────────────────────────────┐
│ a │
│ --- │
│ datetime[μs, Asia/Kathmandu] │
╞══════════════════════════════╡
│ 2024-01-01 00:00:00 +0545 │
│ 2024-01-02 00:00:00 +0545 │
└──────────────────────────────┘
>>> my_library_agnostic_function(df_pa)
pyarrow.Table
a: timestamp[us, tz=Asia/Kathmandu]
----
a: [[2023-12-31 18:15:00.000000Z,2024-01-01 18:15:00.000000Z]]
second()
Extract seconds from underlying DateTime representation.
Returns:
Type | Description |
---|---|
ExprT
|
A new expression. |
Examples:
>>> import pandas as pd
>>> import polars as pl
>>> from datetime import datetime
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>> data = {
... "datetime": [
... datetime(1978, 1, 1, 1, 1, 1),
... datetime(2024, 10, 13, 5, 30, 14),
... datetime(2065, 1, 1, 10, 20, 30),
... ]
... }
>>> df_pd = pd.DataFrame(data)
>>> df_pl = pl.DataFrame(data)
We define a dataframe-agnostic function:
>>> def my_library_agnostic_function(df_native: IntoFrameT) -> IntoFrameT:
... df = nw.from_native(df_native)
... return df.with_columns(
... nw.col("datetime").dt.hour().alias("hour"),
... nw.col("datetime").dt.minute().alias("minute"),
... nw.col("datetime").dt.second().alias("second"),
... ).to_native()
We can then pass either pandas or Polars to func
:
>>> my_library_agnostic_function(df_pd)
datetime hour minute second
0 1978-01-01 01:01:01 1 1 1
1 2024-10-13 05:30:14 5 30 14
2 2065-01-01 10:20:30 10 20 30
>>> my_library_agnostic_function(df_pl)
shape: (3, 4)
┌─────────────────────┬──────┬────────┬────────┐
│ datetime ┆ hour ┆ minute ┆ second │
│ --- ┆ --- ┆ --- ┆ --- │
│ datetime[μs] ┆ i8 ┆ i8 ┆ i8 │
╞═════════════════════╪══════╪════════╪════════╡
│ 1978-01-01 01:01:01 ┆ 1 ┆ 1 ┆ 1 │
│ 2024-10-13 05:30:14 ┆ 5 ┆ 30 ┆ 14 │
│ 2065-01-01 10:20:30 ┆ 10 ┆ 20 ┆ 30 │
└─────────────────────┴──────┴────────┴────────┘
timestamp(time_unit='us')
Return a timestamp in the given time unit.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
time_unit
|
Literal['ns', 'us', 'ms']
|
{'ns', 'us', 'ms'} Time unit. |
'us'
|
Returns:
Type | Description |
---|---|
ExprT
|
A new expression. |
Examples:
>>> from datetime import date
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> data = {"date": [date(2001, 1, 1), None, date(2001, 1, 3)]}
>>> df_pd = pd.DataFrame(data, dtype="datetime64[ns]")
>>> df_pl = pl.DataFrame(data)
>>> df_pa = pa.table(data)
Let's define a dataframe-agnostic function:
>>> def my_library_agnostic_function(df_native: IntoFrameT) -> IntoFrameT:
... df = nw.from_native(df_native)
... return df.with_columns(
... nw.col("date").dt.timestamp().alias("timestamp_us"),
... nw.col("date").dt.timestamp("ms").alias("timestamp_ms"),
... ).to_native()
We can then pass pandas / PyArrow / Polars / any other supported library:
>>> my_library_agnostic_function(df_pd)
date timestamp_us timestamp_ms
0 2001-01-01 9.783072e+14 9.783072e+11
1 NaT NaN NaN
2 2001-01-03 9.784800e+14 9.784800e+11
>>> my_library_agnostic_function(df_pl)
shape: (3, 3)
┌────────────┬─────────────────┬──────────────┐
│ date ┆ timestamp_us ┆ timestamp_ms │
│ --- ┆ --- ┆ --- │
│ date ┆ i64 ┆ i64 │
╞════════════╪═════════════════╪══════════════╡
│ 2001-01-01 ┆ 978307200000000 ┆ 978307200000 │
│ null ┆ null ┆ null │
│ 2001-01-03 ┆ 978480000000000 ┆ 978480000000 │
└────────────┴─────────────────┴──────────────┘
>>> my_library_agnostic_function(df_pa)
pyarrow.Table
date: date32[day]
timestamp_us: int64
timestamp_ms: int64
----
date: [[2001-01-01,null,2001-01-03]]
timestamp_us: [[978307200000000,null,978480000000000]]
timestamp_ms: [[978307200000,null,978480000000]]
total_microseconds()
Get total microseconds.
Returns:
Type | Description |
---|---|
ExprT
|
A new expression. |
Notes
The function outputs the total microseconds in the int dtype by default,
however, pandas may change the dtype to float when there are missing values,
consider using fill_null()
and cast
in this case.
Examples:
>>> import pandas as pd
>>> import polars as pl
>>> from datetime import timedelta
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>> data = {
... "a": [
... timedelta(microseconds=10),
... timedelta(milliseconds=1, microseconds=200),
... ]
... }
>>> df_pd = pd.DataFrame(data)
>>> df_pl = pl.DataFrame(data)
We define a dataframe-agnostic function:
>>> def my_library_agnostic_function(df_native: IntoFrameT) -> IntoFrameT:
... df = nw.from_native(df_native)
... return df.with_columns(
... a_total_microseconds=nw.col("a").dt.total_microseconds()
... ).to_native()
We can then pass either pandas or Polars to func
:
>>> my_library_agnostic_function(df_pd)
a a_total_microseconds
0 0 days 00:00:00.000010 10
1 0 days 00:00:00.001200 1200
>>> my_library_agnostic_function(df_pl)
shape: (2, 2)
┌──────────────┬──────────────────────┐
│ a ┆ a_total_microseconds │
│ --- ┆ --- │
│ duration[μs] ┆ i64 │
╞══════════════╪══════════════════════╡
│ 10µs ┆ 10 │
│ 1200µs ┆ 1200 │
└──────────────┴──────────────────────┘
total_milliseconds()
Get total milliseconds.
Returns:
Type | Description |
---|---|
ExprT
|
A new expression. |
Notes
The function outputs the total milliseconds in the int dtype by default,
however, pandas may change the dtype to float when there are missing values,
consider using fill_null()
and cast
in this case.
Examples:
>>> import pandas as pd
>>> import polars as pl
>>> from datetime import timedelta
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>> data = {
... "a": [
... timedelta(milliseconds=10),
... timedelta(milliseconds=20, microseconds=40),
... ]
... }
>>> df_pd = pd.DataFrame(data)
>>> df_pl = pl.DataFrame(data)
We define a dataframe-agnostic function:
>>> def my_library_agnostic_function(df_native: IntoFrameT) -> IntoFrameT:
... df = nw.from_native(df_native)
... return df.with_columns(
... a_total_milliseconds=nw.col("a").dt.total_milliseconds()
... ).to_native()
We can then pass either pandas or Polars to func
:
>>> my_library_agnostic_function(df_pd)
a a_total_milliseconds
0 0 days 00:00:00.010000 10
1 0 days 00:00:00.020040 20
>>> my_library_agnostic_function(df_pl)
shape: (2, 2)
┌──────────────┬──────────────────────┐
│ a ┆ a_total_milliseconds │
│ --- ┆ --- │
│ duration[μs] ┆ i64 │
╞══════════════╪══════════════════════╡
│ 10ms ┆ 10 │
│ 20040µs ┆ 20 │
└──────────────┴──────────────────────┘
total_minutes()
Get total minutes.
Returns:
Type | Description |
---|---|
ExprT
|
A new expression. |
Notes
The function outputs the total minutes in the int dtype by default,
however, pandas may change the dtype to float when there are missing values,
consider using fill_null()
and cast
in this case.
Examples:
>>> import pandas as pd
>>> import polars as pl
>>> from datetime import timedelta
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>> data = {"a": [timedelta(minutes=10), timedelta(minutes=20, seconds=40)]}
>>> df_pd = pd.DataFrame(data)
>>> df_pl = pl.DataFrame(data)
We define a dataframe-agnostic function:
>>> def my_library_agnostic_function(df_native: IntoFrameT) -> IntoFrameT:
... df = nw.from_native(df_native)
... return df.with_columns(
... a_total_minutes=nw.col("a").dt.total_minutes()
... ).to_native()
We can then pass either pandas or Polars to func
:
>>> my_library_agnostic_function(df_pd)
a a_total_minutes
0 0 days 00:10:00 10
1 0 days 00:20:40 20
>>> my_library_agnostic_function(df_pl)
shape: (2, 2)
┌──────────────┬─────────────────┐
│ a ┆ a_total_minutes │
│ --- ┆ --- │
│ duration[μs] ┆ i64 │
╞══════════════╪═════════════════╡
│ 10m ┆ 10 │
│ 20m 40s ┆ 20 │
└──────────────┴─────────────────┘
total_nanoseconds()
Get total nanoseconds.
Returns:
Type | Description |
---|---|
ExprT
|
A new expression. |
Notes
The function outputs the total nanoseconds in the int dtype by default,
however, pandas may change the dtype to float when there are missing values,
consider using fill_null()
and cast
in this case.
Examples:
>>> import pandas as pd
>>> import polars as pl
>>> from datetime import timedelta
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>> data = ["2024-01-01 00:00:00.000000001", "2024-01-01 00:00:00.000000002"]
>>> df_pd = pd.DataFrame({"a": pd.to_datetime(data)})
>>> df_pl = pl.DataFrame({"a": data}).with_columns(
... pl.col("a").str.to_datetime(time_unit="ns")
... )
We define a dataframe-agnostic function:
>>> def my_library_agnostic_function(df_native: IntoFrameT) -> IntoFrameT:
... df = nw.from_native(df_native)
... return df.with_columns(
... a_diff_total_nanoseconds=nw.col("a").diff().dt.total_nanoseconds()
... ).to_native()
We can then pass either pandas or Polars to func
:
>>> my_library_agnostic_function(df_pd)
a a_diff_total_nanoseconds
0 2024-01-01 00:00:00.000000001 NaN
1 2024-01-01 00:00:00.000000002 1.0
>>> my_library_agnostic_function(df_pl)
shape: (2, 2)
┌───────────────────────────────┬──────────────────────────┐
│ a ┆ a_diff_total_nanoseconds │
│ --- ┆ --- │
│ datetime[ns] ┆ i64 │
╞═══════════════════════════════╪══════════════════════════╡
│ 2024-01-01 00:00:00.000000001 ┆ null │
│ 2024-01-01 00:00:00.000000002 ┆ 1 │
└───────────────────────────────┴──────────────────────────┘
total_seconds()
Get total seconds.
Returns:
Type | Description |
---|---|
ExprT
|
A new expression. |
Notes
The function outputs the total seconds in the int dtype by default,
however, pandas may change the dtype to float when there are missing values,
consider using fill_null()
and cast
in this case.
Examples:
>>> import pandas as pd
>>> import polars as pl
>>> from datetime import timedelta
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>> data = {"a": [timedelta(seconds=10), timedelta(seconds=20, milliseconds=40)]}
>>> df_pd = pd.DataFrame(data)
>>> df_pl = pl.DataFrame(data)
We define a dataframe-agnostic function:
>>> def my_library_agnostic_function(df_native: IntoFrameT) -> IntoFrameT:
... df = nw.from_native(df_native)
... return df.with_columns(
... a_total_seconds=nw.col("a").dt.total_seconds()
... ).to_native()
We can then pass either pandas or Polars to func
:
>>> my_library_agnostic_function(df_pd)
a a_total_seconds
0 0 days 00:00:10 10
1 0 days 00:00:20.040000 20
>>> my_library_agnostic_function(df_pl)
shape: (2, 2)
┌──────────────┬─────────────────┐
│ a ┆ a_total_seconds │
│ --- ┆ --- │
│ duration[μs] ┆ i64 │
╞══════════════╪═════════════════╡
│ 10s ┆ 10 │
│ 20s 40ms ┆ 20 │
└──────────────┴─────────────────┘
to_string(format)
Convert a Date/Time/Datetime column into a String column with the given format.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
format
|
str
|
Format to format temporal column with. |
required |
Returns:
Type | Description |
---|---|
ExprT
|
A new expression. |
Notes
Unfortunately, different libraries interpret format directives a bit differently.
- Chrono, the library used by Polars, uses
"%.f"
for fractional seconds, whereas pandas and Python stdlib use".%f"
. - PyArrow interprets
"%S"
as "seconds, including fractional seconds" whereas most other tools interpret it as "just seconds, as 2 digits".
Therefore, we make the following adjustments:
- for pandas-like libraries, we replace
"%S.%f"
with"%S%.f"
. - for PyArrow, we replace
"%S.%f"
with"%S"
.
Workarounds like these don't make us happy, and we try to avoid them as much as possible, but here we feel like it's the best compromise.
If you just want to format a date/datetime Series as a local datetime string, and have it work as consistently as possible across libraries, we suggest using:
"%Y-%m-%dT%H:%M:%S%.f"
for datetimes"%Y-%m-%d"
for dates
though note that, even then, different tools may return a different number of trailing zeros. Nonetheless, this is probably consistent enough for most applications.
If you have an application where this is not enough, please open an issue and let us know.
Examples:
>>> from datetime import datetime
>>> import pandas as pd
>>> import polars as pl
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>> data = [
... datetime(2020, 3, 1),
... datetime(2020, 4, 1),
... datetime(2020, 5, 1),
... ]
>>> df_pd = pd.DataFrame({"a": data})
>>> df_pl = pl.DataFrame({"a": data})
We define a dataframe-agnostic function:
>>> def my_library_agnostic_function(df_native: IntoFrameT) -> IntoFrameT:
... df = nw.from_native(df_native)
... return df.select(
... nw.col("a").dt.to_string("%Y/%m/%d %H:%M:%S")
... ).to_native()
We can then pass either pandas or Polars to func
:
>>> my_library_agnostic_function(df_pd)
a
0 2020/03/01 00:00:00
1 2020/04/01 00:00:00
2 2020/05/01 00:00:00
>>> my_library_agnostic_function(df_pl)
shape: (3, 1)
┌─────────────────────┐
│ a │
│ --- │
│ str │
╞═════════════════════╡
│ 2020/03/01 00:00:00 │
│ 2020/04/01 00:00:00 │
│ 2020/05/01 00:00:00 │
└─────────────────────┘
year()
Extract year from underlying DateTime representation.
Returns the year number in the calendar date.
Returns:
Type | Description |
---|---|
ExprT
|
A new expression. |
Examples:
>>> import pandas as pd
>>> import polars as pl
>>> from datetime import datetime
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>> data = {
... "datetime": [
... datetime(1978, 6, 1),
... datetime(2024, 12, 13),
... datetime(2065, 1, 1),
... ]
... }
>>> df_pd = pd.DataFrame(data)
>>> df_pl = pl.DataFrame(data)
We define a dataframe-agnostic function:
>>> def my_library_agnostic_function(df_native: IntoFrameT) -> IntoFrameT:
... df = nw.from_native(df_native)
... return df.with_columns(
... nw.col("datetime").dt.year().alias("year")
... ).to_native()
We can then pass either pandas or Polars to func
:
>>> my_library_agnostic_function(df_pd)
datetime year
0 1978-06-01 1978
1 2024-12-13 2024
2 2065-01-01 2065
>>> my_library_agnostic_function(df_pl)
shape: (3, 2)
┌─────────────────────┬──────┐
│ datetime ┆ year │
│ --- ┆ --- │
│ datetime[μs] ┆ i32 │
╞═════════════════════╪══════╡
│ 1978-06-01 00:00:00 ┆ 1978 │
│ 2024-12-13 00:00:00 ┆ 2024 │
│ 2065-01-01 00:00:00 ┆ 2065 │
└─────────────────────┴──────┘