narwhals.Expr.dt
convert_time_zone(time_zone)
Convert to a new time zone.
If converting from a time-zone-naive column, then conversion happens as if converting from UTC.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
time_zone
|
str
|
Target time zone. |
required |
Returns:
Type | Description |
---|---|
ExprT
|
A new expression. |
Examples:
>>> from datetime import datetime, timezone
>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>>
>>> data = {
... "a": [
... datetime(2024, 1, 1, tzinfo=timezone.utc),
... datetime(2024, 1, 2, tzinfo=timezone.utc),
... ]
... }
>>> df_pd = pd.DataFrame(data)
>>> df_pl = pl.DataFrame(data)
>>> df_pa = pa.table(data)
Let's define a dataframe-agnostic function:
>>> def agnostic_dt_convert_time_zone(df_native: IntoFrameT) -> IntoFrameT:
... df = nw.from_native(df_native)
... return df.select(
... nw.col("a").dt.convert_time_zone("Asia/Kathmandu")
... ).to_native()
We can then pass any supported library such as pandas, Polars, or
PyArrow to agnostic_dt_convert_time_zone
:
>>> agnostic_dt_convert_time_zone(df_pd)
a
0 2024-01-01 05:45:00+05:45
1 2024-01-02 05:45:00+05:45
>>> agnostic_dt_convert_time_zone(df_pl)
shape: (2, 1)
┌──────────────────────────────┐
│ a │
│ --- │
│ datetime[μs, Asia/Kathmandu] │
╞══════════════════════════════╡
│ 2024-01-01 05:45:00 +0545 │
│ 2024-01-02 05:45:00 +0545 │
└──────────────────────────────┘
>>> agnostic_dt_convert_time_zone(df_pa)
pyarrow.Table
a: timestamp[us, tz=Asia/Kathmandu]
----
a: [[2024-01-01 00:00:00.000000Z,2024-01-02 00:00:00.000000Z]]
date()
Extract the date from underlying DateTime representation.
Returns:
Type | Description |
---|---|
ExprT
|
A new expression. |
Raises:
Type | Description |
---|---|
NotImplementedError
|
If pandas default backend is being used. |
Examples:
>>> from datetime import datetime
>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>>
>>> data = {"a": [datetime(2012, 1, 7, 10, 20), datetime(2023, 3, 10, 11, 32)]}
>>> df_pd = pd.DataFrame(data).convert_dtypes(dtype_backend="pyarrow")
>>> df_pl = pl.DataFrame(data)
>>> df_pa = pa.table(data)
We define a library agnostic function:
>>> def agnostic_dt_date(df_native: IntoFrameT) -> IntoFrameT:
... df = nw.from_native(df_native)
... return df.select(nw.col("a").dt.date()).to_native()
We can then pass any supported library such as pandas, Polars, or
PyArrow to agnostic_dt_date
:
>>> agnostic_dt_date(df_pd)
a
0 2012-01-07
1 2023-03-10
>>> agnostic_dt_date(df_pl)
shape: (2, 1)
┌────────────┐
│ a │
│ --- │
│ date │
╞════════════╡
│ 2012-01-07 │
│ 2023-03-10 │
└────────────┘
>>> agnostic_dt_date(df_pa)
pyarrow.Table
a: date32[day]
----
a: [[2012-01-07,2023-03-10]]
day()
Extract day from underlying DateTime representation.
Returns the day of month starting from 1. The return value ranges from 1 to 31. (The last day of month differs by months.)
Returns:
Type | Description |
---|---|
ExprT
|
A new expression. |
Examples:
>>> from datetime import datetime
>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>>
>>> data = {
... "datetime": [
... datetime(1978, 6, 1),
... datetime(2024, 12, 13),
... datetime(2065, 1, 1),
... ]
... }
>>> df_pd = pd.DataFrame(data)
>>> df_pl = pl.DataFrame(data)
>>> df_pa = pa.table(data)
We define a dataframe-agnostic function:
>>> def agnostic_dt_day(df_native: IntoFrameT) -> IntoFrameT:
... df = nw.from_native(df_native)
... return df.with_columns(
... nw.col("datetime").dt.day().alias("day"),
... ).to_native()
We can then pass any supported library such as pandas, Polars, or
PyArrow to agnostic_dt_day
:
>>> agnostic_dt_day(df_pd)
datetime day
0 1978-06-01 1
1 2024-12-13 13
2 2065-01-01 1
>>> agnostic_dt_day(df_pl)
shape: (3, 2)
┌─────────────────────┬─────┐
│ datetime ┆ day │
│ --- ┆ --- │
│ datetime[μs] ┆ i8 │
╞═════════════════════╪═════╡
│ 1978-06-01 00:00:00 ┆ 1 │
│ 2024-12-13 00:00:00 ┆ 13 │
│ 2065-01-01 00:00:00 ┆ 1 │
└─────────────────────┴─────┘
>>> agnostic_dt_day(df_pa)
pyarrow.Table
datetime: timestamp[us]
day: int64
----
datetime: [[1978-06-01 00:00:00.000000,2024-12-13 00:00:00.000000,2065-01-01 00:00:00.000000]]
day: [[1,13,1]]
hour()
Extract hour from underlying DateTime representation.
Returns the hour number from 0 to 23.
Returns:
Type | Description |
---|---|
ExprT
|
A new expression. |
Examples:
>>> from datetime import datetime
>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>>
>>> data = {
... "datetime": [
... datetime(1978, 1, 1, 1),
... datetime(2024, 10, 13, 5),
... datetime(2065, 1, 1, 10),
... ]
... }
>>> df_pd = pd.DataFrame(data)
>>> df_pl = pl.DataFrame(data)
>>> df_pa = pa.table(data)
We define a dataframe-agnostic function:
>>> def agnostic_dt_hour(df_native: IntoFrameT) -> IntoFrameT:
... df = nw.from_native(df_native)
... return df.with_columns(
... nw.col("datetime").dt.hour().alias("hour")
... ).to_native()
We can then pass any supported library such as pandas, Polars, or
PyArrow to agnostic_dt_hour
:
>>> agnostic_dt_hour(df_pd)
datetime hour
0 1978-01-01 01:00:00 1
1 2024-10-13 05:00:00 5
2 2065-01-01 10:00:00 10
>>> agnostic_dt_hour(df_pl)
shape: (3, 2)
┌─────────────────────┬──────┐
│ datetime ┆ hour │
│ --- ┆ --- │
│ datetime[μs] ┆ i8 │
╞═════════════════════╪══════╡
│ 1978-01-01 01:00:00 ┆ 1 │
│ 2024-10-13 05:00:00 ┆ 5 │
│ 2065-01-01 10:00:00 ┆ 10 │
└─────────────────────┴──────┘
>>> agnostic_dt_hour(df_pa)
pyarrow.Table
datetime: timestamp[us]
hour: int64
----
datetime: [[1978-01-01 01:00:00.000000,2024-10-13 05:00:00.000000,2065-01-01 10:00:00.000000]]
hour: [[1,5,10]]
microsecond()
Extract microseconds from underlying DateTime representation.
Returns:
Type | Description |
---|---|
ExprT
|
A new expression. |
Examples:
>>> from datetime import datetime
>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>>
>>> data = {
... "datetime": [
... datetime(1978, 1, 1, 1, 1, 1, 0),
... datetime(2024, 10, 13, 5, 30, 14, 505000),
... datetime(2065, 1, 1, 10, 20, 30, 67000),
... ]
... }
>>> df_pd = pd.DataFrame(data)
>>> df_pl = pl.DataFrame(data)
>>> df_pa = pa.table(data)
We define a dataframe-agnostic function:
>>> def agnostic_dt_microsecond(df_native: IntoFrameT) -> IntoFrameT:
... df = nw.from_native(df_native)
... return df.with_columns(
... nw.col("datetime").dt.microsecond().alias("microsecond"),
... ).to_native()
We can then pass any supported library such as pandas, Polars, or
PyArrow to agnostic_dt_microsecond
:
>>> agnostic_dt_microsecond(df_pd)
datetime microsecond
0 1978-01-01 01:01:01.000 0
1 2024-10-13 05:30:14.505 505000
2 2065-01-01 10:20:30.067 67000
>>> agnostic_dt_microsecond(df_pl)
shape: (3, 2)
┌─────────────────────────┬─────────────┐
│ datetime ┆ microsecond │
│ --- ┆ --- │
│ datetime[μs] ┆ i32 │
╞═════════════════════════╪═════════════╡
│ 1978-01-01 01:01:01 ┆ 0 │
│ 2024-10-13 05:30:14.505 ┆ 505000 │
│ 2065-01-01 10:20:30.067 ┆ 67000 │
└─────────────────────────┴─────────────┘
>>> agnostic_dt_microsecond(df_pa)
pyarrow.Table
datetime: timestamp[us]
microsecond: int64
----
datetime: [[1978-01-01 01:01:01.000000,2024-10-13 05:30:14.505000,2065-01-01 10:20:30.067000]]
microsecond: [[0,505000,67000]]
millisecond()
Extract milliseconds from underlying DateTime representation.
Returns:
Type | Description |
---|---|
ExprT
|
A new expression. |
Examples:
>>> from datetime import datetime
>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>>
>>> data = {
... "datetime": [
... datetime(1978, 1, 1, 1, 1, 1, 0),
... datetime(2024, 10, 13, 5, 30, 14, 505000),
... datetime(2065, 1, 1, 10, 20, 30, 67000),
... ]
... }
>>> df_pd = pd.DataFrame(data)
>>> df_pl = pl.DataFrame(data)
>>> df_pa = pa.table(data)
We define a dataframe-agnostic function:
>>> def agnostic_dt_millisecond(df_native: IntoFrameT) -> IntoFrameT:
... df = nw.from_native(df_native)
... return df.with_columns(
... nw.col("datetime").dt.millisecond().alias("millisecond"),
... ).to_native()
We can then pass any supported library such as pandas, Polars, or
PyArrow to agnostic_dt_millisecond
:
>>> agnostic_dt_millisecond(df_pd)
datetime millisecond
0 1978-01-01 01:01:01.000 0
1 2024-10-13 05:30:14.505 505
2 2065-01-01 10:20:30.067 67
>>> agnostic_dt_millisecond(df_pl)
shape: (3, 2)
┌─────────────────────────┬─────────────┐
│ datetime ┆ millisecond │
│ --- ┆ --- │
│ datetime[μs] ┆ i32 │
╞═════════════════════════╪═════════════╡
│ 1978-01-01 01:01:01 ┆ 0 │
│ 2024-10-13 05:30:14.505 ┆ 505 │
│ 2065-01-01 10:20:30.067 ┆ 67 │
└─────────────────────────┴─────────────┘
>>> agnostic_dt_millisecond(df_pa)
pyarrow.Table
datetime: timestamp[us]
millisecond: int64
----
datetime: [[1978-01-01 01:01:01.000000,2024-10-13 05:30:14.505000,2065-01-01 10:20:30.067000]]
millisecond: [[0,505,67]]
minute()
Extract minutes from underlying DateTime representation.
Returns the minute number from 0 to 59.
Returns:
Type | Description |
---|---|
ExprT
|
A new expression. |
Examples:
>>> from datetime import datetime
>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>>
>>> data = {
... "datetime": [
... datetime(1978, 1, 1, 1, 1),
... datetime(2024, 10, 13, 5, 30),
... datetime(2065, 1, 1, 10, 20),
... ]
... }
>>> df_pd = pd.DataFrame(data)
>>> df_pl = pl.DataFrame(data)
>>> df_pa = pa.table(data)
We define a dataframe-agnostic function:
>>> def agnostic_dt_minute(df_native: IntoFrameT) -> IntoFrameT:
... df = nw.from_native(df_native)
... return df.with_columns(
... nw.col("datetime").dt.minute().alias("minute"),
... ).to_native()
We can then pass any supported library such as pandas, Polars, or
PyArrow to agnostic_dt_minute
:
>>> agnostic_dt_minute(df_pd)
datetime minute
0 1978-01-01 01:01:00 1
1 2024-10-13 05:30:00 30
2 2065-01-01 10:20:00 20
>>> agnostic_dt_minute(df_pl)
shape: (3, 2)
┌─────────────────────┬────────┐
│ datetime ┆ minute │
│ --- ┆ --- │
│ datetime[μs] ┆ i8 │
╞═════════════════════╪════════╡
│ 1978-01-01 01:01:00 ┆ 1 │
│ 2024-10-13 05:30:00 ┆ 30 │
│ 2065-01-01 10:20:00 ┆ 20 │
└─────────────────────┴────────┘
>>> agnostic_dt_minute(df_pa)
pyarrow.Table
datetime: timestamp[us]
minute: int64
----
datetime: [[1978-01-01 01:01:00.000000,2024-10-13 05:30:00.000000,2065-01-01 10:20:00.000000]]
minute: [[1,30,20]]
month()
Extract month from underlying DateTime representation.
Returns the month number starting from 1. The return value ranges from 1 to 12.
Returns:
Type | Description |
---|---|
ExprT
|
A new expression. |
Examples:
>>> from datetime import datetime
>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>>
>>> data = {
... "datetime": [
... datetime(1978, 6, 1),
... datetime(2024, 12, 13),
... datetime(2065, 1, 1),
... ]
... }
>>> df_pd = pd.DataFrame(data)
>>> df_pl = pl.DataFrame(data)
>>> df_pa = pa.table(data)
We define a dataframe-agnostic function:
>>> def agnostic_dt_month(df_native: IntoFrameT) -> IntoFrameT:
... df = nw.from_native(df_native)
... return df.with_columns(
... nw.col("datetime").dt.month().alias("month"),
... ).to_native()
We can then pass any supported library such as pandas, Polars, or
PyArrow to agnostic_dt_month
:
>>> agnostic_dt_month(df_pd)
datetime month
0 1978-06-01 6
1 2024-12-13 12
2 2065-01-01 1
>>> agnostic_dt_month(df_pl)
shape: (3, 2)
┌─────────────────────┬───────┐
│ datetime ┆ month │
│ --- ┆ --- │
│ datetime[μs] ┆ i8 │
╞═════════════════════╪═══════╡
│ 1978-06-01 00:00:00 ┆ 6 │
│ 2024-12-13 00:00:00 ┆ 12 │
│ 2065-01-01 00:00:00 ┆ 1 │
└─────────────────────┴───────┘
>>> agnostic_dt_month(df_pa)
pyarrow.Table
datetime: timestamp[us]
month: int64
----
datetime: [[1978-06-01 00:00:00.000000,2024-12-13 00:00:00.000000,2065-01-01 00:00:00.000000]]
month: [[6,12,1]]
nanosecond()
Extract Nanoseconds from underlying DateTime representation.
Returns:
Type | Description |
---|---|
ExprT
|
A new expression. |
Examples:
>>> from datetime import datetime
>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>>
>>> data = {
... "datetime": [
... datetime(1978, 1, 1, 1, 1, 1, 0),
... datetime(2024, 10, 13, 5, 30, 14, 500000),
... datetime(2065, 1, 1, 10, 20, 30, 60000),
... ]
... }
>>> df_pd = pd.DataFrame(data)
>>> df_pl = pl.DataFrame(data)
>>> df_pa = pa.table(data)
We define a dataframe-agnostic function:
>>> def agnostic_dt_nanosecond(df_native: IntoFrameT) -> IntoFrameT:
... df = nw.from_native(df_native)
... return df.with_columns(
... nw.col("datetime").dt.nanosecond().alias("nanosecond"),
... ).to_native()
We can then pass any supported library such as pandas, Polars, or
PyArrow to agnostic_dt_nanosecond
:
>>> agnostic_dt_nanosecond(df_pd)
datetime nanosecond
0 1978-01-01 01:01:01.000 0
1 2024-10-13 05:30:14.500 500000000
2 2065-01-01 10:20:30.060 60000000
>>> agnostic_dt_nanosecond(df_pl)
shape: (3, 2)
┌─────────────────────────┬────────────┐
│ datetime ┆ nanosecond │
│ --- ┆ --- │
│ datetime[μs] ┆ i32 │
╞═════════════════════════╪════════════╡
│ 1978-01-01 01:01:01 ┆ 0 │
│ 2024-10-13 05:30:14.500 ┆ 500000000 │
│ 2065-01-01 10:20:30.060 ┆ 60000000 │
└─────────────────────────┴────────────┘
>>> agnostic_dt_nanosecond(df_pa)
pyarrow.Table
datetime: timestamp[us]
nanosecond: int64
----
datetime: [[1978-01-01 01:01:01.000000,2024-10-13 05:30:14.500000,2065-01-01 10:20:30.060000]]
nanosecond: [[0,500000000,60000000]]
ordinal_day()
Get ordinal day.
Returns:
Type | Description |
---|---|
ExprT
|
A new expression. |
Examples:
>>> from datetime import datetime
>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>>
>>> data = {"a": [datetime(2020, 1, 1), datetime(2020, 8, 3)]}
>>> df_pd = pd.DataFrame(data)
>>> df_pl = pl.DataFrame(data)
>>> df_pa = pa.table(data)
We define a dataframe-agnostic function:
>>> def agnostic_dt_ordinal_day(df_native: IntoFrameT) -> IntoFrameT:
... df = nw.from_native(df_native)
... return df.with_columns(
... a_ordinal_day=nw.col("a").dt.ordinal_day()
... ).to_native()
We can then pass any supported library such as pandas, Polars, or
PyArrow to agnostic_dt_ordinal_day
:
>>> agnostic_dt_ordinal_day(df_pd)
a a_ordinal_day
0 2020-01-01 1
1 2020-08-03 216
>>> agnostic_dt_ordinal_day(df_pl)
shape: (2, 2)
┌─────────────────────┬───────────────┐
│ a ┆ a_ordinal_day │
│ --- ┆ --- │
│ datetime[μs] ┆ i16 │
╞═════════════════════╪═══════════════╡
│ 2020-01-01 00:00:00 ┆ 1 │
│ 2020-08-03 00:00:00 ┆ 216 │
└─────────────────────┴───────────────┘
>>> agnostic_dt_ordinal_day(df_pa)
pyarrow.Table
a: timestamp[us]
a_ordinal_day: int64
----
a: [[2020-01-01 00:00:00.000000,2020-08-03 00:00:00.000000]]
a_ordinal_day: [[1,216]]
replace_time_zone(time_zone)
Replace time zone.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
time_zone
|
str | None
|
Target time zone. |
required |
Returns:
Type | Description |
---|---|
ExprT
|
A new expression. |
Examples:
>>> from datetime import datetime, timezone
>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>>
>>> data = {
... "a": [
... datetime(2024, 1, 1, tzinfo=timezone.utc),
... datetime(2024, 1, 2, tzinfo=timezone.utc),
... ]
... }
>>> df_pd = pd.DataFrame(data)
>>> df_pl = pl.DataFrame(data)
>>> df_pa = pa.table(data)
Let's define a dataframe-agnostic function:
>>> def agnostic_dt_replace_time_zone(df_native: IntoFrameT) -> IntoFrameT:
... df = nw.from_native(df_native)
... return df.select(
... nw.col("a").dt.replace_time_zone("Asia/Kathmandu")
... ).to_native()
We can then pass any supported library such as pandas, Polars, or
PyArrow to agnostic_dt_replace_time_zone
:
>>> agnostic_dt_replace_time_zone(df_pd)
a
0 2024-01-01 00:00:00+05:45
1 2024-01-02 00:00:00+05:45
>>> agnostic_dt_replace_time_zone(df_pl)
shape: (2, 1)
┌──────────────────────────────┐
│ a │
│ --- │
│ datetime[μs, Asia/Kathmandu] │
╞══════════════════════════════╡
│ 2024-01-01 00:00:00 +0545 │
│ 2024-01-02 00:00:00 +0545 │
└──────────────────────────────┘
>>> agnostic_dt_replace_time_zone(df_pa)
pyarrow.Table
a: timestamp[us, tz=Asia/Kathmandu]
----
a: [[2023-12-31 18:15:00.000000Z,2024-01-01 18:15:00.000000Z]]
second()
Extract seconds from underlying DateTime representation.
Returns:
Type | Description |
---|---|
ExprT
|
A new expression. |
Examples:
>>> from datetime import datetime
>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>>
>>> data = {
... "datetime": [
... datetime(1978, 1, 1, 1, 1, 1),
... datetime(2024, 10, 13, 5, 30, 14),
... datetime(2065, 1, 1, 10, 20, 30),
... ]
... }
>>> df_pd = pd.DataFrame(data)
>>> df_pl = pl.DataFrame(data)
>>> df_pa = pa.table(data)
We define a dataframe-agnostic function:
>>> def agnostic_dt_second(df_native: IntoFrameT) -> IntoFrameT:
... df = nw.from_native(df_native)
... return df.with_columns(
... nw.col("datetime").dt.second().alias("second"),
... ).to_native()
We can then pass any supported library such as pandas, Polars, or
PyArrow to agnostic_dt_second
:
>>> agnostic_dt_second(df_pd)
datetime second
0 1978-01-01 01:01:01 1
1 2024-10-13 05:30:14 14
2 2065-01-01 10:20:30 30
>>> agnostic_dt_second(df_pl)
shape: (3, 2)
┌─────────────────────┬────────┐
│ datetime ┆ second │
│ --- ┆ --- │
│ datetime[μs] ┆ i8 │
╞═════════════════════╪════════╡
│ 1978-01-01 01:01:01 ┆ 1 │
│ 2024-10-13 05:30:14 ┆ 14 │
│ 2065-01-01 10:20:30 ┆ 30 │
└─────────────────────┴────────┘
>>> agnostic_dt_second(df_pa)
pyarrow.Table
datetime: timestamp[us]
second: int64
----
datetime: [[1978-01-01 01:01:01.000000,2024-10-13 05:30:14.000000,2065-01-01 10:20:30.000000]]
second: [[1,14,30]]
timestamp(time_unit='us')
Return a timestamp in the given time unit.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
time_unit
|
Literal['ns', 'us', 'ms']
|
{'ns', 'us', 'ms'} Time unit. |
'us'
|
Returns:
Type | Description |
---|---|
ExprT
|
A new expression. |
Examples:
>>> from datetime import date
>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>>
>>> data = {"date": [date(2001, 1, 1), None, date(2001, 1, 3)]}
>>> df_pd = pd.DataFrame(data, dtype="datetime64[ns]")
>>> df_pl = pl.DataFrame(data)
>>> df_pa = pa.table(data)
Let's define a dataframe-agnostic function:
>>> def agnostic_dt_timestamp(df_native: IntoFrameT) -> IntoFrameT:
... df = nw.from_native(df_native)
... return df.with_columns(
... nw.col("date").dt.timestamp().alias("timestamp_us"),
... nw.col("date").dt.timestamp("ms").alias("timestamp_ms"),
... ).to_native()
We can then pass any supported library such as pandas, Polars, or
PyArrow to agnostic_dt_timestamp
:
>>> agnostic_dt_timestamp(df_pd)
date timestamp_us timestamp_ms
0 2001-01-01 9.783072e+14 9.783072e+11
1 NaT NaN NaN
2 2001-01-03 9.784800e+14 9.784800e+11
>>> agnostic_dt_timestamp(df_pl)
shape: (3, 3)
┌────────────┬─────────────────┬──────────────┐
│ date ┆ timestamp_us ┆ timestamp_ms │
│ --- ┆ --- ┆ --- │
│ date ┆ i64 ┆ i64 │
╞════════════╪═════════════════╪══════════════╡
│ 2001-01-01 ┆ 978307200000000 ┆ 978307200000 │
│ null ┆ null ┆ null │
│ 2001-01-03 ┆ 978480000000000 ┆ 978480000000 │
└────────────┴─────────────────┴──────────────┘
>>> agnostic_dt_timestamp(df_pa)
pyarrow.Table
date: date32[day]
timestamp_us: int64
timestamp_ms: int64
----
date: [[2001-01-01,null,2001-01-03]]
timestamp_us: [[978307200000000,null,978480000000000]]
timestamp_ms: [[978307200000,null,978480000000]]
total_microseconds()
Get total microseconds.
Returns:
Type | Description |
---|---|
ExprT
|
A new expression. |
Notes
The function outputs the total microseconds in the int dtype by default,
however, pandas may change the dtype to float when there are missing values,
consider using fill_null()
and cast
in this case.
Examples:
>>> from datetime import timedelta
>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>>
>>> data = {
... "a": [
... timedelta(microseconds=10),
... timedelta(milliseconds=1, microseconds=200),
... ]
... }
>>> df_pd = pd.DataFrame(data)
>>> df_pl = pl.DataFrame(data)
>>> df_pa = pa.table(data)
We define a dataframe-agnostic function:
>>> def agnostic_dt_total_microseconds(df_native: IntoFrameT) -> IntoFrameT:
... df = nw.from_native(df_native)
... return df.with_columns(
... a_total_microseconds=nw.col("a").dt.total_microseconds()
... ).to_native()
We can then pass any supported library such as pandas, Polars, or
PyArrow to agnostic_dt_total_microseconds
:
>>> agnostic_dt_total_microseconds(df_pd)
a a_total_microseconds
0 0 days 00:00:00.000010 10
1 0 days 00:00:00.001200 1200
>>> agnostic_dt_total_microseconds(df_pl)
shape: (2, 2)
┌──────────────┬──────────────────────┐
│ a ┆ a_total_microseconds │
│ --- ┆ --- │
│ duration[μs] ┆ i64 │
╞══════════════╪══════════════════════╡
│ 10µs ┆ 10 │
│ 1200µs ┆ 1200 │
└──────────────┴──────────────────────┘
>>> agnostic_dt_total_microseconds(df_pa)
pyarrow.Table
a: duration[us]
a_total_microseconds: int64
----
a: [[10,1200]]
a_total_microseconds: [[10,1200]]
total_milliseconds()
Get total milliseconds.
Returns:
Type | Description |
---|---|
ExprT
|
A new expression. |
Notes
The function outputs the total milliseconds in the int dtype by default,
however, pandas may change the dtype to float when there are missing values,
consider using fill_null()
and cast
in this case.
Examples:
>>> from datetime import timedelta
>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>>
>>> data = {
... "a": [
... timedelta(milliseconds=10),
... timedelta(milliseconds=20, microseconds=40),
... ]
... }
>>> df_pd = pd.DataFrame(data)
>>> df_pl = pl.DataFrame(data)
>>> df_pa = pa.table(data)
We define a dataframe-agnostic function:
>>> def agnostic_dt_total_milliseconds(df_native: IntoFrameT) -> IntoFrameT:
... df = nw.from_native(df_native)
... return df.with_columns(
... a_total_milliseconds=nw.col("a").dt.total_milliseconds()
... ).to_native()
We can then pass any supported library such as pandas, Polars, or
PyArrow to agnostic_dt_total_milliseconds
:
>>> agnostic_dt_total_milliseconds(df_pd)
a a_total_milliseconds
0 0 days 00:00:00.010000 10
1 0 days 00:00:00.020040 20
>>> agnostic_dt_total_milliseconds(df_pl)
shape: (2, 2)
┌──────────────┬──────────────────────┐
│ a ┆ a_total_milliseconds │
│ --- ┆ --- │
│ duration[μs] ┆ i64 │
╞══════════════╪══════════════════════╡
│ 10ms ┆ 10 │
│ 20040µs ┆ 20 │
└──────────────┴──────────────────────┘
>>> agnostic_dt_total_milliseconds(df_pa)
pyarrow.Table
a: duration[us]
a_total_milliseconds: int64
----
a: [[10000,20040]]
a_total_milliseconds: [[10,20]]
total_minutes()
Get total minutes.
Returns:
Type | Description |
---|---|
ExprT
|
A new expression. |
Notes
The function outputs the total minutes in the int dtype by default,
however, pandas may change the dtype to float when there are missing values,
consider using fill_null()
and cast
in this case.
Examples:
>>> from datetime import timedelta
>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>>
>>> data = {"a": [timedelta(minutes=10), timedelta(minutes=20, seconds=40)]}
>>> df_pd = pd.DataFrame(data)
>>> df_pl = pl.DataFrame(data)
>>> df_pa = pa.table(data)
We define a dataframe-agnostic function:
>>> def agnostic_dt_total_minutes(df_native: IntoFrameT) -> IntoFrameT:
... df = nw.from_native(df_native)
... return df.with_columns(
... a_total_minutes=nw.col("a").dt.total_minutes()
... ).to_native()
We can then pass any supported library such as pandas, Polars, or
PyArrow to agnostic_dt_total_minutes
:
>>> agnostic_dt_total_minutes(df_pd)
a a_total_minutes
0 0 days 00:10:00 10
1 0 days 00:20:40 20
>>> agnostic_dt_total_minutes(df_pl)
shape: (2, 2)
┌──────────────┬─────────────────┐
│ a ┆ a_total_minutes │
│ --- ┆ --- │
│ duration[μs] ┆ i64 │
╞══════════════╪═════════════════╡
│ 10m ┆ 10 │
│ 20m 40s ┆ 20 │
└──────────────┴─────────────────┘
>>> agnostic_dt_total_minutes(df_pa)
pyarrow.Table
a: duration[us]
a_total_minutes: int64
----
a: [[600000000,1240000000]]
a_total_minutes: [[10,20]]
total_nanoseconds()
Get total nanoseconds.
Returns:
Type | Description |
---|---|
ExprT
|
A new expression. |
Notes
The function outputs the total nanoseconds in the int dtype by default,
however, pandas may change the dtype to float when there are missing values,
consider using fill_null()
and cast
in this case.
Examples:
>>> from datetime import timedelta
>>> import pandas as pd
>>> import polars as pl
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>>
>>> data = ["2024-01-01 00:00:00.000000001", "2024-01-01 00:00:00.000000002"]
>>> df_pd = pd.DataFrame({"a": pd.to_datetime(data)})
>>> df_pl = pl.DataFrame({"a": data}).with_columns(
... pl.col("a").str.to_datetime(time_unit="ns")
... )
We define a dataframe-agnostic function:
>>> def agnostic_dt_total_nanoseconds(df_native: IntoFrameT) -> IntoFrameT:
... df = nw.from_native(df_native)
... return df.with_columns(
... a_diff_total_nanoseconds=nw.col("a").diff().dt.total_nanoseconds()
... ).to_native()
We can then pass any supported library such as pandas, Polars, or
PyArrow to agnostic_dt_total_nanoseconds
:
>>> agnostic_dt_total_nanoseconds(df_pd)
a a_diff_total_nanoseconds
0 2024-01-01 00:00:00.000000001 NaN
1 2024-01-01 00:00:00.000000002 1.0
>>> agnostic_dt_total_nanoseconds(df_pl)
shape: (2, 2)
┌───────────────────────────────┬──────────────────────────┐
│ a ┆ a_diff_total_nanoseconds │
│ --- ┆ --- │
│ datetime[ns] ┆ i64 │
╞═══════════════════════════════╪══════════════════════════╡
│ 2024-01-01 00:00:00.000000001 ┆ null │
│ 2024-01-01 00:00:00.000000002 ┆ 1 │
└───────────────────────────────┴──────────────────────────┘
total_seconds()
Get total seconds.
Returns:
Type | Description |
---|---|
ExprT
|
A new expression. |
Notes
The function outputs the total seconds in the int dtype by default,
however, pandas may change the dtype to float when there are missing values,
consider using fill_null()
and cast
in this case.
Examples:
>>> from datetime import timedelta
>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>>
>>> data = {"a": [timedelta(seconds=10), timedelta(seconds=20, milliseconds=40)]}
>>> df_pd = pd.DataFrame(data)
>>> df_pl = pl.DataFrame(data)
>>> df_pa = pa.table(data)
We define a dataframe-agnostic function:
>>> def agnostic_dt_total_seconds(df_native: IntoFrameT) -> IntoFrameT:
... df = nw.from_native(df_native)
... return df.with_columns(
... a_total_seconds=nw.col("a").dt.total_seconds()
... ).to_native()
We can then pass any supported library such as pandas, Polars, or
PyArrow to agnostic_dt_total_seconds
:
>>> agnostic_dt_total_seconds(df_pd)
a a_total_seconds
0 0 days 00:00:10 10
1 0 days 00:00:20.040000 20
>>> agnostic_dt_total_seconds(df_pl)
shape: (2, 2)
┌──────────────┬─────────────────┐
│ a ┆ a_total_seconds │
│ --- ┆ --- │
│ duration[μs] ┆ i64 │
╞══════════════╪═════════════════╡
│ 10s ┆ 10 │
│ 20s 40ms ┆ 20 │
└──────────────┴─────────────────┘
>>> agnostic_dt_total_seconds(df_pa)
pyarrow.Table
a: duration[us]
a_total_seconds: int64
----
a: [[10000000,20040000]]
a_total_seconds: [[10,20]]
to_string(format)
Convert a Date/Time/Datetime column into a String column with the given format.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
format
|
str
|
Format to format temporal column with. |
required |
Returns:
Type | Description |
---|---|
ExprT
|
A new expression. |
Notes
Unfortunately, different libraries interpret format directives a bit differently.
- Chrono, the library used by Polars, uses
"%.f"
for fractional seconds, whereas pandas and Python stdlib use".%f"
. - PyArrow interprets
"%S"
as "seconds, including fractional seconds" whereas most other tools interpret it as "just seconds, as 2 digits".
Therefore, we make the following adjustments:
- for pandas-like libraries, we replace
"%S.%f"
with"%S%.f"
. - for PyArrow, we replace
"%S.%f"
with"%S"
.
Workarounds like these don't make us happy, and we try to avoid them as much as possible, but here we feel like it's the best compromise.
If you just want to format a date/datetime Series as a local datetime string, and have it work as consistently as possible across libraries, we suggest using:
"%Y-%m-%dT%H:%M:%S%.f"
for datetimes"%Y-%m-%d"
for dates
though note that, even then, different tools may return a different number of trailing zeros. Nonetheless, this is probably consistent enough for most applications.
If you have an application where this is not enough, please open an issue and let us know.
Examples:
>>> from datetime import datetime
>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>>
>>> data = {
... "a": [
... datetime(2020, 3, 1),
... datetime(2020, 4, 1),
... datetime(2020, 5, 1),
... ]
... }
>>> df_pd = pd.DataFrame(data)
>>> df_pl = pl.DataFrame(data)
>>> df_pa = pa.table(data)
We define a dataframe-agnostic function:
>>> def agnostic_dt_to_string(df_native: IntoFrameT) -> IntoFrameT:
... df = nw.from_native(df_native)
... return df.select(
... nw.col("a").dt.to_string("%Y/%m/%d %H:%M:%S")
... ).to_native()
We can then pass any supported library such as pandas, Polars, or
PyArrow to agnostic_dt_to_string
:
>>> agnostic_dt_to_string(df_pd)
a
0 2020/03/01 00:00:00
1 2020/04/01 00:00:00
2 2020/05/01 00:00:00
>>> agnostic_dt_to_string(df_pl)
shape: (3, 1)
┌─────────────────────┐
│ a │
│ --- │
│ str │
╞═════════════════════╡
│ 2020/03/01 00:00:00 │
│ 2020/04/01 00:00:00 │
│ 2020/05/01 00:00:00 │
└─────────────────────┘
>>> agnostic_dt_to_string(df_pa)
pyarrow.Table
a: string
----
a: [["2020/03/01 00:00:00.000000","2020/04/01 00:00:00.000000","2020/05/01 00:00:00.000000"]]
weekday()
Extract the week day from the underlying Date representation.
Returns:
Type | Description |
---|---|
ExprT
|
Returns the ISO weekday number where monday = 1 and sunday = 7 |
Examples:
>>> from datetime import datetime
>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>>
>>> data = {"a": [datetime(2020, 1, 1), datetime(2020, 8, 3)]}
>>> df_pd = pd.DataFrame(data)
>>> df_pl = pl.DataFrame(data)
>>> df_pa = pa.table(data)
We define a dataframe-agnostic function:
>>> def agnostic_dt_weekday(df_native: IntoFrameT) -> IntoFrameT:
... df = nw.from_native(df_native)
... return df.with_columns(a_weekday=nw.col("a").dt.weekday()).to_native()
We can then pass either pandas, Polars, PyArrow, and other supported libraries to
agnostic_dt_weekday
:
>>> agnostic_dt_weekday(df_pd)
a a_weekday
0 2020-01-01 3
1 2020-08-03 1
>>> agnostic_dt_weekday(df_pl)
shape: (2, 2)
┌─────────────────────┬───────────┐
│ a ┆ a_weekday │
│ --- ┆ --- │
│ datetime[μs] ┆ i8 │
╞═════════════════════╪═══════════╡
│ 2020-01-01 00:00:00 ┆ 3 │
│ 2020-08-03 00:00:00 ┆ 1 │
└─────────────────────┴───────────┘
>>> agnostic_dt_weekday(df_pa)
pyarrow.Table
a: timestamp[us]
a_weekday: int64
----
a: [[2020-01-01 00:00:00.000000,2020-08-03 00:00:00.000000]]
a_weekday: [[3,1]]
year()
Extract year from underlying DateTime representation.
Returns the year number in the calendar date.
Returns:
Type | Description |
---|---|
ExprT
|
A new expression. |
Examples:
>>> from datetime import datetime
>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>>
>>> data = {
... "datetime": [
... datetime(1978, 6, 1),
... datetime(2024, 12, 13),
... datetime(2065, 1, 1),
... ]
... }
>>> df_pd = pd.DataFrame(data)
>>> df_pl = pl.DataFrame(data)
>>> df_pa = pa.table(data)
We define a dataframe-agnostic function:
>>> def agnostic_dt_year(df_native: IntoFrameT) -> IntoFrameT:
... df = nw.from_native(df_native)
... return df.with_columns(
... nw.col("datetime").dt.year().alias("year")
... ).to_native()
We can then pass any supported library such as pandas, Polars, or
PyArrow to agnostic_dt_year
:
>>> agnostic_dt_year(df_pd)
datetime year
0 1978-06-01 1978
1 2024-12-13 2024
2 2065-01-01 2065
>>> agnostic_dt_year(df_pl)
shape: (3, 2)
┌─────────────────────┬──────┐
│ datetime ┆ year │
│ --- ┆ --- │
│ datetime[μs] ┆ i32 │
╞═════════════════════╪══════╡
│ 1978-06-01 00:00:00 ┆ 1978 │
│ 2024-12-13 00:00:00 ┆ 2024 │
│ 2065-01-01 00:00:00 ┆ 2065 │
└─────────────────────┴──────┘
>>> agnostic_dt_year(df_pa)
pyarrow.Table
datetime: timestamp[us]
year: int64
----
datetime: [[1978-06-01 00:00:00.000000,2024-12-13 00:00:00.000000,2065-01-01 00:00:00.000000]]
year: [[1978,2024,2065]]