narwhals.Expr.list
len()
Return the number of elements in each list.
Null values count towards the total.
Returns:
Type | Description |
---|---|
ExprT
|
A new expression. |
Examples:
>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>>
>>> data = {"a": [[1, 2], [3, 4, None], None, []]}
Let's define a dataframe-agnostic function:
>>> def agnostic_list_len(df_native: IntoFrameT) -> IntoFrameT:
... df = nw.from_native(df_native)
... return df.with_columns(a_len=nw.col("a").list.len()).to_native()
We can then pass pandas / PyArrow / Polars / any other supported library:
>>> agnostic_list_len(
... pd.DataFrame(data).astype({"a": pd.ArrowDtype(pa.list_(pa.int64()))})
... )
a a_len
0 [1. 2.] 2
1 [ 3. 4. nan] 3
2 <NA> <NA>
3 [] 0
>>> agnostic_list_len(pl.DataFrame(data))
shape: (4, 2)
┌──────────────┬───────┐
│ a ┆ a_len │
│ --- ┆ --- │
│ list[i64] ┆ u32 │
╞══════════════╪═══════╡
│ [1, 2] ┆ 2 │
│ [3, 4, null] ┆ 3 │
│ null ┆ null │
│ [] ┆ 0 │
└──────────────┴───────┘
>>> agnostic_list_len(pa.table(data))
pyarrow.Table
a: list<item: int64>
child 0, item: int64
a_len: uint32
----
a: [[[1,2],[3,4,null],null,[]]]
a_len: [[2,3,null,0]]