Skip to content

narwhals.Expr.list

len()

Return the number of elements in each list.

Null values count towards the total.

Returns:

Type Description
ExprT

A new expression.

Examples:

>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>>
>>> data = {"a": [[1, 2], [3, 4, None], None, []]}

Let's define a dataframe-agnostic function:

>>> def agnostic_list_len(df_native: IntoFrameT) -> IntoFrameT:
...     df = nw.from_native(df_native)
...     return df.with_columns(a_len=nw.col("a").list.len()).to_native()

We can then pass pandas / PyArrow / Polars / any other supported library:

>>> agnostic_list_len(
...     pd.DataFrame(data).astype({"a": pd.ArrowDtype(pa.list_(pa.int64()))})
... )
               a  a_len
0        [1. 2.]      2
1  [ 3.  4. nan]      3
2           <NA>   <NA>
3             []      0
>>> agnostic_list_len(pl.DataFrame(data))
shape: (4, 2)
┌──────────────┬───────┐
│ a            ┆ a_len │
│ ---          ┆ ---   │
│ list[i64]    ┆ u32   │
╞══════════════╪═══════╡
│ [1, 2]       ┆ 2     │
│ [3, 4, null] ┆ 3     │
│ null         ┆ null  │
│ []           ┆ 0     │
└──────────────┴───────┘
>>> agnostic_list_len(pa.table(data))
pyarrow.Table
a: list<item: int64>
  child 0, item: int64
a_len: uint32
----
a: [[[1,2],[3,4,null],null,[]]]
a_len: [[2,3,null,0]]