Skip to content

narwhals.Expr.str

contains(pattern, *, literal=False)

Check if string contains a substring that matches a pattern.

Parameters:

Name Type Description Default
pattern str

A Character sequence or valid regular expression pattern.

required
literal bool

If True, treats the pattern as a literal string. If False, assumes the pattern is a regular expression.

False

Returns:

Type Description
ExprT

A new expression.

Examples:

>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>>
>>> data = {"pets": ["cat", "dog", "rabbit and parrot", "dove", None]}
>>> df_pd = pd.DataFrame(data)
>>> df_pl = pl.DataFrame(data)
>>> df_pa = pa.table(data)

We define a dataframe-agnostic function:

>>> def agnostic_str_contains(df_native: IntoFrameT) -> IntoFrameT:
...     df = nw.from_native(df_native)
...     return df.with_columns(
...         default_match=nw.col("pets").str.contains("parrot|Dove"),
...         case_insensitive_match=nw.col("pets").str.contains("(?i)parrot|Dove"),
...         literal_match=nw.col("pets").str.contains(
...             "parrot|Dove", literal=True
...         ),
...     ).to_native()

We can then pass any supported library such as pandas, Polars, or PyArrow to agnostic_str_contains:

>>> agnostic_str_contains(df_pd)
                pets default_match case_insensitive_match literal_match
0                cat         False                  False         False
1                dog         False                  False         False
2  rabbit and parrot          True                   True         False
3               dove         False                   True         False
4               None          None                   None          None
>>> agnostic_str_contains(df_pl)
shape: (5, 4)
┌───────────────────┬───────────────┬────────────────────────┬───────────────┐
│ pets              ┆ default_match ┆ case_insensitive_match ┆ literal_match │
│ ---               ┆ ---           ┆ ---                    ┆ ---           │
│ str               ┆ bool          ┆ bool                   ┆ bool          │
╞═══════════════════╪═══════════════╪════════════════════════╪═══════════════╡
│ cat               ┆ false         ┆ false                  ┆ false         │
│ dog               ┆ false         ┆ false                  ┆ false         │
│ rabbit and parrot ┆ true          ┆ true                   ┆ false         │
│ dove              ┆ false         ┆ true                   ┆ false         │
│ null              ┆ null          ┆ null                   ┆ null          │
└───────────────────┴───────────────┴────────────────────────┴───────────────┘
>>> agnostic_str_contains(df_pa)
pyarrow.Table
pets: string
default_match: bool
case_insensitive_match: bool
literal_match: bool
----
pets: [["cat","dog","rabbit and parrot","dove",null]]
default_match: [[false,false,true,false,null]]
case_insensitive_match: [[false,false,true,true,null]]
literal_match: [[false,false,false,false,null]]

ends_with(suffix)

Check if string values end with a substring.

Parameters:

Name Type Description Default
suffix str

suffix substring

required

Returns:

Type Description
ExprT

A new expression.

Examples:

>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>>
>>> data = {"fruits": ["apple", "mango", None]}
>>> df_pd = pd.DataFrame(data)
>>> df_pl = pl.DataFrame(data)
>>> df_pa = pa.table(data)

We define a dataframe-agnostic function:

>>> def agnostic_str_ends_with(df_native: IntoFrameT) -> IntoFrameT:
...     df = nw.from_native(df_native)
...     return df.with_columns(
...         has_suffix=nw.col("fruits").str.ends_with("ngo")
...     ).to_native()

We can then pass any supported library such as pandas, Polars, or PyArrow to agnostic_str_ends_with:

>>> agnostic_str_ends_with(df_pd)
  fruits has_suffix
0  apple      False
1  mango       True
2   None       None
>>> agnostic_str_ends_with(df_pl)
shape: (3, 2)
┌────────┬────────────┐
│ fruits ┆ has_suffix │
│ ---    ┆ ---        │
│ str    ┆ bool       │
╞════════╪════════════╡
│ apple  ┆ false      │
│ mango  ┆ true       │
│ null   ┆ null       │
└────────┴────────────┘
>>> agnostic_str_ends_with(df_pa)
pyarrow.Table
fruits: string
has_suffix: bool
----
fruits: [["apple","mango",null]]
has_suffix: [[false,true,null]]

head(n=5)

Take the first n elements of each string.

Parameters:

Name Type Description Default
n int

Number of elements to take. Negative indexing is not supported.

5

Returns:

Type Description
ExprT

A new expression.

Notes

If the length of the string has fewer than n characters, the full string is returned.

Examples:

>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>>
>>> data = {"lyrics": ["Atatata", "taata", "taatatata", "zukkyun"]}
>>> df_pd = pd.DataFrame(data)
>>> df_pl = pl.DataFrame(data)
>>> df_pa = pa.table(data)

We define a dataframe-agnostic function:

>>> def agnostic_str_head(df_native: IntoFrameT) -> IntoFrameT:
...     df = nw.from_native(df_native)
...     return df.with_columns(
...         lyrics_head=nw.col("lyrics").str.head()
...     ).to_native()

We can then pass any supported library such as pandas, Polars, or PyArrow to agnostic_str_head:

>>> agnostic_str_head(df_pd)
      lyrics lyrics_head
0    Atatata       Atata
1      taata       taata
2  taatatata       taata
3    zukkyun       zukky
>>> agnostic_str_head(df_pl)
shape: (4, 2)
┌───────────┬─────────────┐
│ lyrics    ┆ lyrics_head │
│ ---       ┆ ---         │
│ str       ┆ str         │
╞═══════════╪═════════════╡
│ Atatata   ┆ Atata       │
│ taata     ┆ taata       │
│ taatatata ┆ taata       │
│ zukkyun   ┆ zukky       │
└───────────┴─────────────┘
>>> agnostic_str_head(df_pa)
pyarrow.Table
lyrics: string
lyrics_head: string
----
lyrics: [["Atatata","taata","taatatata","zukkyun"]]
lyrics_head: [["Atata","taata","taata","zukky"]]

len_chars()

Return the length of each string as the number of characters.

Returns:

Type Description
ExprT

A new expression.

Examples:

>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>>
>>> data = {"words": ["foo", "Café", "345", "東京", None]}
>>> df_pd = pd.DataFrame(data)
>>> df_pl = pl.DataFrame(data)
>>> df_pa = pa.table(data)

We define a dataframe-agnostic function:

>>> def agnostic_str_len_chars(df_native: IntoFrameT) -> IntoFrameT:
...     df = nw.from_native(df_native)
...     return df.with_columns(
...         words_len=nw.col("words").str.len_chars()
...     ).to_native()

We can then pass any supported library such as pandas, Polars, or PyArrow to agnostic_str_len_chars:

>>> agnostic_str_len_chars(df_pd)
  words  words_len
0   foo        3.0
1  Café        4.0
2   345        3.0
3    東京        2.0
4  None        NaN
>>> agnostic_str_len_chars(df_pl)
shape: (5, 2)
┌───────┬───────────┐
│ words ┆ words_len │
│ ---   ┆ ---       │
│ str   ┆ u32       │
╞═══════╪═══════════╡
│ foo   ┆ 3         │
│ Café  ┆ 4         │
│ 345   ┆ 3         │
│ 東京  ┆ 2         │
│ null  ┆ null      │
└───────┴───────────┘
>>> agnostic_str_len_chars(df_pa)
pyarrow.Table
words: string
words_len: int32
----
words: [["foo","Café","345","東京",null]]
words_len: [[3,4,3,2,null]]

replace(pattern, value, *, literal=False, n=1)

Replace first matching regex/literal substring with a new string value.

Parameters:

Name Type Description Default
pattern str

A valid regular expression pattern.

required
value str

String that will replace the matched substring.

required
literal bool

Treat pattern as a literal string.

False
n int

Number of matches to replace.

1

Returns:

Type Description
ExprT

A new expression.

Examples:

>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>>
>>> data = {"foo": ["123abc", "abc abc123"]}
>>> df_pd = pd.DataFrame(data)
>>> df_pl = pl.DataFrame(data)
>>> df_pa = pa.table(data)

We define a dataframe-agnostic function:

>>> def agnostic_str_replace(df_native: IntoFrameT) -> IntoFrameT:
...     df = nw.from_native(df_native)
...     df = df.with_columns(replaced=nw.col("foo").str.replace("abc", ""))
...     return df.to_native()

We can then pass any supported library such as pandas, Polars, or PyArrow to agnostic_str_replace:

>>> agnostic_str_replace(df_pd)
          foo replaced
0      123abc      123
1  abc abc123   abc123
>>> agnostic_str_replace(df_pl)
shape: (2, 2)
┌────────────┬──────────┐
│ foo        ┆ replaced │
│ ---        ┆ ---      │
│ str        ┆ str      │
╞════════════╪══════════╡
│ 123abc     ┆ 123      │
│ abc abc123 ┆  abc123  │
└────────────┴──────────┘
>>> agnostic_str_replace(df_pa)
pyarrow.Table
foo: string
replaced: string
----
foo: [["123abc","abc abc123"]]
replaced: [["123"," abc123"]]

replace_all(pattern, value, *, literal=False)

Replace all matching regex/literal substring with a new string value.

Parameters:

Name Type Description Default
pattern str

A valid regular expression pattern.

required
value str

String that will replace the matched substring.

required
literal bool

Treat pattern as a literal string.

False

Returns:

Type Description
ExprT

A new expression.

Examples:

>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>>
>>> data = {"foo": ["123abc", "abc abc123"]}
>>> df_pd = pd.DataFrame(data)
>>> df_pl = pl.DataFrame(data)
>>> df_pa = pa.table(data)

We define a dataframe-agnostic function:

>>> def agnostic_str_replace_all(df_native: IntoFrameT) -> IntoFrameT:
...     df = nw.from_native(df_native)
...     df = df.with_columns(replaced=nw.col("foo").str.replace_all("abc", ""))
...     return df.to_native()

We can then pass any supported library such as pandas, Polars, or PyArrow to agnostic_str_replace_all:

>>> agnostic_str_replace_all(df_pd)
          foo replaced
0      123abc      123
1  abc abc123      123
>>> agnostic_str_replace_all(df_pl)
shape: (2, 2)
┌────────────┬──────────┐
│ foo        ┆ replaced │
│ ---        ┆ ---      │
│ str        ┆ str      │
╞════════════╪══════════╡
│ 123abc     ┆ 123      │
│ abc abc123 ┆  123     │
└────────────┴──────────┘
>>> agnostic_str_replace_all(df_pa)
pyarrow.Table
foo: string
replaced: string
----
foo: [["123abc","abc abc123"]]
replaced: [["123"," 123"]]

slice(offset, length=None)

Create subslices of the string values of an expression.

Parameters:

Name Type Description Default
offset int

Start index. Negative indexing is supported.

required
length int | None

Length of the slice. If set to None (default), the slice is taken to the end of the string.

None

Returns:

Type Description
ExprT

A new expression.

Examples:

>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>>
>>> data = {"s": ["pear", None, "papaya", "dragonfruit"]}
>>> df_pd = pd.DataFrame(data)
>>> df_pl = pl.DataFrame(data)
>>> df_pa = pa.table(data)

We define a dataframe-agnostic function:

>>> def agnostic_str_slice(df_native: IntoFrameT) -> IntoFrameT:
...     df = nw.from_native(df_native)
...     return df.with_columns(
...         s_sliced=nw.col("s").str.slice(4, length=3)
...     ).to_native()

We can then pass any supported library such as pandas, Polars, or PyArrow to agnostic_str_slice:

>>> agnostic_str_slice(df_pd)
             s s_sliced
0         pear
1         None     None
2       papaya       ya
3  dragonfruit      onf
>>> agnostic_str_slice(df_pl)
shape: (4, 2)
┌─────────────┬──────────┐
│ s           ┆ s_sliced │
│ ---         ┆ ---      │
│ str         ┆ str      │
╞═════════════╪══════════╡
│ pear        ┆          │
│ null        ┆ null     │
│ papaya      ┆ ya       │
│ dragonfruit ┆ onf      │
└─────────────┴──────────┘
>>> agnostic_str_slice(df_pa)
pyarrow.Table
s: string
s_sliced: string
----
s: [["pear",null,"papaya","dragonfruit"]]
s_sliced: [["",null,"ya","onf"]]

Using negative indexes:

>>> def agnostic_str_slice_negative(df_native: IntoFrameT) -> IntoFrameT:
...     df = nw.from_native(df_native)
...     return df.with_columns(s_sliced=nw.col("s").str.slice(-3)).to_native()
>>> agnostic_str_slice_negative(df_pd)
             s s_sliced
0         pear      ear
1         None     None
2       papaya      aya
3  dragonfruit      uit
>>> agnostic_str_slice_negative(df_pl)
shape: (4, 2)
┌─────────────┬──────────┐
│ s           ┆ s_sliced │
│ ---         ┆ ---      │
│ str         ┆ str      │
╞═════════════╪══════════╡
│ pear        ┆ ear      │
│ null        ┆ null     │
│ papaya      ┆ aya      │
│ dragonfruit ┆ uit      │
└─────────────┴──────────┘
>>> agnostic_str_slice_negative(df_pa)
pyarrow.Table
s: string
s_sliced: string
----
s: [["pear",null,"papaya","dragonfruit"]]
s_sliced: [["ear",null,"aya","uit"]]

starts_with(prefix)

Check if string values start with a substring.

Parameters:

Name Type Description Default
prefix str

prefix substring

required

Returns:

Type Description
ExprT

A new expression.

Examples:

>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>>
>>> data = {"fruits": ["apple", "mango", None]}
>>> df_pd = pd.DataFrame(data)
>>> df_pl = pl.DataFrame(data)
>>> df_pa = pa.table(data)

We define a dataframe-agnostic function:

>>> def agnostic_str_starts_with(df_native: IntoFrameT) -> IntoFrameT:
...     df = nw.from_native(df_native)
...     return df.with_columns(
...         has_prefix=nw.col("fruits").str.starts_with("app")
...     ).to_native()

We can then pass any supported library such as pandas, Polars, or PyArrow to agnostic_str_starts_with:

>>> agnostic_str_starts_with(df_pd)
  fruits has_prefix
0  apple       True
1  mango      False
2   None       None
>>> agnostic_str_starts_with(df_pl)
shape: (3, 2)
┌────────┬────────────┐
│ fruits ┆ has_prefix │
│ ---    ┆ ---        │
│ str    ┆ bool       │
╞════════╪════════════╡
│ apple  ┆ true       │
│ mango  ┆ false      │
│ null   ┆ null       │
└────────┴────────────┘
>>> agnostic_str_starts_with(df_pa)
pyarrow.Table
fruits: string
has_prefix: bool
----
fruits: [["apple","mango",null]]
has_prefix: [[true,false,null]]

strip_chars(characters=None)

Remove leading and trailing characters.

Parameters:

Name Type Description Default
characters str | None

The set of characters to be removed. All combinations of this set of characters will be stripped from the start and end of the string. If set to None (default), all leading and trailing whitespace is removed instead.

None

Returns:

Type Description
ExprT

A new expression.

Examples:

>>> from typing import Any
>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrame
>>>
>>> data = {"fruits": ["apple", "\nmango"]}
>>> df_pd = pd.DataFrame(data)
>>> df_pl = pl.DataFrame(data)
>>> df_pa = pa.table(data)

We define a dataframe-agnostic function:

>>> def agnostic_str_strip_chars(df_native: IntoFrame) -> dict[str, Any]:
...     df = nw.from_native(df_native)
...     df = df.with_columns(stripped=nw.col("fruits").str.strip_chars())
...     return df.to_dict(as_series=False)

We can then pass any supported library such as pandas, Polars, or PyArrow to agnostic_str_strip_chars:

>>> agnostic_str_strip_chars(df_pd)
{'fruits': ['apple', '\nmango'], 'stripped': ['apple', 'mango']}
>>> agnostic_str_strip_chars(df_pl)
{'fruits': ['apple', '\nmango'], 'stripped': ['apple', 'mango']}
>>> agnostic_str_strip_chars(df_pa)
{'fruits': ['apple', '\nmango'], 'stripped': ['apple', 'mango']}

tail(n=5)

Take the last n elements of each string.

Parameters:

Name Type Description Default
n int

Number of elements to take. Negative indexing is not supported.

5

Returns:

Type Description
ExprT

A new expression.

Notes

If the length of the string has fewer than n characters, the full string is returned.

Examples:

>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>>
>>> data = {"lyrics": ["Atatata", "taata", "taatatata", "zukkyun"]}
>>> df_pd = pd.DataFrame(data)
>>> df_pl = pl.DataFrame(data)
>>> df_pa = pa.table(data)

We define a dataframe-agnostic function:

>>> def agnostic_str_tail(df_native: IntoFrameT) -> IntoFrameT:
...     df = nw.from_native(df_native)
...     return df.with_columns(
...         lyrics_tail=nw.col("lyrics").str.tail()
...     ).to_native()

We can then pass any supported library such as pandas, Polars, or PyArrow to agnostic_str_tail:

>>> agnostic_str_tail(df_pd)
      lyrics lyrics_tail
0    Atatata       atata
1      taata       taata
2  taatatata       atata
3    zukkyun       kkyun
>>> agnostic_str_tail(df_pl)
shape: (4, 2)
┌───────────┬─────────────┐
│ lyrics    ┆ lyrics_tail │
│ ---       ┆ ---         │
│ str       ┆ str         │
╞═══════════╪═════════════╡
│ Atatata   ┆ atata       │
│ taata     ┆ taata       │
│ taatatata ┆ atata       │
│ zukkyun   ┆ kkyun       │
└───────────┴─────────────┘
>>> agnostic_str_tail(df_pa)
pyarrow.Table
lyrics: string
lyrics_tail: string
----
lyrics: [["Atatata","taata","taatatata","zukkyun"]]
lyrics_tail: [["atata","taata","atata","kkyun"]]

to_datetime(format=None)

Convert to Datetime dtype.

Warning

As different backends auto-infer format in different ways, if format=None there is no guarantee that the result will be equal.

Parameters:

Name Type Description Default
format str | None

Format to use for conversion. If set to None (default), the format is inferred from the data.

None

Returns:

Type Description
ExprT

A new expression.

Notes

pandas defaults to nanosecond time unit, Polars to microsecond. Prior to pandas 2.0, nanoseconds were the only time unit supported in pandas, with no ability to set any other one. The ability to set the time unit in pandas, if the version permits, will arrive.

Examples:

>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>>
>>> data = ["2020-01-01", "2020-01-02"]
>>> df_pd = pd.DataFrame({"a": data})
>>> df_pl = pl.DataFrame({"a": data})
>>> df_pa = pa.table({"a": data})

We define a dataframe-agnostic function:

>>> def agnostic_str_to_datetime(df_native: IntoFrameT) -> IntoFrameT:
...     df = nw.from_native(df_native)
...     return df.select(
...         nw.col("a").str.to_datetime(format="%Y-%m-%d")
...     ).to_native()

We can then pass any supported library such as pandas, Polars, or PyArrow to agnostic_str_to_datetime:

>>> agnostic_str_to_datetime(df_pd)
           a
0 2020-01-01
1 2020-01-02
>>> agnostic_str_to_datetime(df_pl)
shape: (2, 1)
┌─────────────────────┐
│ a                   │
│ ---                 │
│ datetime[μs]        │
╞═════════════════════╡
│ 2020-01-01 00:00:00 │
│ 2020-01-02 00:00:00 │
└─────────────────────┘
>>> agnostic_str_to_datetime(df_pa)
pyarrow.Table
a: timestamp[us]
----
a: [[2020-01-01 00:00:00.000000,2020-01-02 00:00:00.000000]]

to_lowercase()

Transform string to lowercase variant.

Returns:

Type Description
ExprT

A new expression.

Examples:

>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>>
>>> data = {"fruits": ["APPLE", "MANGO", None]}
>>> df_pd = pd.DataFrame(data)
>>> df_pl = pl.DataFrame(data)
>>> df_pa = pa.table(data)

We define a dataframe-agnostic function:

>>> def agnostic_str_to_lowercase(df_native: IntoFrameT) -> IntoFrameT:
...     df = nw.from_native(df_native)
...     return df.with_columns(
...         lower_col=nw.col("fruits").str.to_lowercase()
...     ).to_native()

We can then pass any supported library such as pandas, Polars, or PyArrow to agnostic_str_to_lowercase:

>>> agnostic_str_to_lowercase(df_pd)
  fruits lower_col
0  APPLE     apple
1  MANGO     mango
2   None      None
>>> agnostic_str_to_lowercase(df_pl)
shape: (3, 2)
┌────────┬───────────┐
│ fruits ┆ lower_col │
│ ---    ┆ ---       │
│ str    ┆ str       │
╞════════╪═══════════╡
│ APPLE  ┆ apple     │
│ MANGO  ┆ mango     │
│ null   ┆ null      │
└────────┴───────────┘
>>> agnostic_str_to_lowercase(df_pa)
pyarrow.Table
fruits: string
lower_col: string
----
fruits: [["APPLE","MANGO",null]]
lower_col: [["apple","mango",null]]

to_uppercase()

Transform string to uppercase variant.

Returns:

Type Description
ExprT

A new expression.

Notes

The PyArrow backend will convert 'ß' to 'ẞ' instead of 'SS'. For more info see the related issue. There may be other unicode-edge-case-related variations across implementations.

Examples:

>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>>
>>> data = {"fruits": ["apple", "mango", None]}
>>> df_pd = pd.DataFrame(data)
>>> df_pl = pl.DataFrame(data)
>>> df_pa = pa.table(data)

We define a dataframe-agnostic function:

>>> def agnostic_str_to_uppercase(df_native: IntoFrameT) -> IntoFrameT:
...     df = nw.from_native(df_native)
...     return df.with_columns(
...         upper_col=nw.col("fruits").str.to_uppercase()
...     ).to_native()

We can then pass any supported library such as pandas, Polars, or PyArrow to agnostic_str_to_uppercase:

>>> agnostic_str_to_uppercase(df_pd)
  fruits upper_col
0  apple     APPLE
1  mango     MANGO
2   None      None
>>> agnostic_str_to_uppercase(df_pl)
shape: (3, 2)
┌────────┬───────────┐
│ fruits ┆ upper_col │
│ ---    ┆ ---       │
│ str    ┆ str       │
╞════════╪═══════════╡
│ apple  ┆ APPLE     │
│ mango  ┆ MANGO     │
│ null   ┆ null      │
└────────┴───────────┘
>>> agnostic_str_to_uppercase(df_pa)
pyarrow.Table
fruits: string
upper_col: string
----
fruits: [["apple","mango",null]]
upper_col: [["APPLE","MANGO",null]]