Skip to content

narwhals.LazyGroupBy

agg(*aggs, **named_aggs)

Compute aggregations for each group of a group by operation.

If a library does not support lazy execution, then this is a no-op.

Parameters:

Name Type Description Default
aggs IntoExpr | Iterable[IntoExpr]

Aggregations to compute for each group of the group by operation, specified as positional arguments.

()
named_aggs IntoExpr

Additional aggregations, specified as keyword arguments.

{}

Returns:

Type Description
LazyFrameT

A new LazyFrame.

Examples:

Group by one column or by multiple columns and call agg to compute the grouped sum of another column.

>>> import polars as pl
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>> lf_pl = pl.LazyFrame(
...     {
...         "a": ["a", "b", "a", "b", "c"],
...         "b": [1, 2, 1, 3, 3],
...         "c": [5, 4, 3, 2, 1],
...     }
... )

We define library agnostic functions:

>>> def agnostic_func_one_col(lf_native: IntoFrameT) -> IntoFrameT:
...     lf = nw.from_native(lf_native)
...     return nw.to_native(lf.group_by("a").agg(nw.col("b").sum()).sort("a"))
>>> def agnostic_func_mult_col(lf_native: IntoFrameT) -> IntoFrameT:
...     lf = nw.from_native(lf_native)
...     return nw.to_native(lf.group_by("a", "b").agg(nw.sum("c")).sort("a", "b"))

We can then pass a lazy frame and materialise it with collect:

>>> agnostic_func_one_col(lf_pl).collect()
shape: (3, 2)
┌─────┬─────┐
│ a   ┆ b   │
│ --- ┆ --- │
│ str ┆ i64 │
╞═════╪═════╡
│ a   ┆ 2   │
│ b   ┆ 5   │
│ c   ┆ 3   │
└─────┴─────┘
>>> agnostic_func_mult_col(lf_pl).collect()
shape: (4, 3)
┌─────┬─────┬─────┐
│ a   ┆ b   ┆ c   │
│ --- ┆ --- ┆ --- │
│ str ┆ i64 ┆ i64 │
╞═════╪═════╪═════╡
│ a   ┆ 1   ┆ 8   │
│ b   ┆ 2   ┆ 4   │
│ b   ┆ 3   ┆ 2   │
│ c   ┆ 3   ┆ 1   │
└─────┴─────┴─────┘