narwhals.Series.str
contains
contains(pattern: str, *, literal: bool = False) -> SeriesT
Check if string contains a substring that matches a pattern.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pattern
|
str
|
A Character sequence or valid regular expression pattern. |
required |
literal
|
bool
|
If True, treats the pattern as a literal string. If False, assumes the pattern is a regular expression. |
False
|
Examples:
>>> import pyarrow as pa
>>> import narwhals as nw
>>> s_native = pa.chunked_array([["cat", "dog", "rabbit and parrot"]])
>>> s = nw.from_native(s_native, series_only=True)
>>> s.str.contains("cat|parrot").to_native()
<pyarrow.lib.ChunkedArray object at ...>
[
[
true,
false,
true
]
]
ends_with
ends_with(suffix: str) -> SeriesT
Check if string values end with a substring.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
suffix
|
str
|
suffix substring |
required |
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> s_native = pd.Series(["apple", "mango", None])
>>> s = nw.from_native(s_native, series_only=True)
>>> s.str.ends_with("ngo").to_native()
0 False
1 True
2 None
dtype: object
head
head(n: int = 5) -> SeriesT
Take the first n elements of each string.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n
|
int
|
Number of elements to take. Negative indexing is supported (see note (1.)) |
5
|
Notes
- When the
n
input is negative,head
returns characters up to the n-th from the end of the string. For example, ifn = -3
, then all characters except the last three are returned. - If the length of the string has fewer than
n
characters, the full string is returned.
Examples:
>>> import pyarrow as pa
>>> import narwhals as nw
>>> s_native = pa.chunked_array([["taata", "taatatata", "zukkyun"]])
>>> s = nw.from_native(s_native, series_only=True)
>>> s.str.head().to_native()
<pyarrow.lib.ChunkedArray object at ...>
[
[
"taata",
"taata",
"zukky"
]
]
len_chars
len_chars() -> SeriesT
Return the length of each string as the number of characters.
Examples:
>>> import polars as pl
>>> import narwhals as nw
>>> s_native = pl.Series(["foo", "345", None])
>>> s = nw.from_native(s_native, series_only=True)
>>> s.str.len_chars().to_native()
shape: (3,)
Series: '' [u32]
[
3
3
null
]
replace
replace(
pattern: str,
value: str | SeriesT,
*,
literal: bool = False,
n: int = 1
) -> SeriesT
Replace first matching regex/literal substring with a new string value.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pattern
|
str
|
A valid regular expression pattern. |
required |
value
|
str | SeriesT
|
String that will replace the matched substring. |
required |
literal
|
bool
|
Treat |
False
|
n
|
int
|
Number of matches to replace. |
1
|
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> s_native = pd.Series(["123abc", "abc abc123"])
>>> s = nw.from_native(s_native, series_only=True)
>>> s.str.replace("abc", "").to_native()
0 123
1 abc123
dtype: object
replace_all
replace_all(
pattern: str,
value: str | SeriesT,
*,
literal: bool = False
) -> SeriesT
Replace all matching regex/literal substring with a new string value.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pattern
|
str
|
A valid regular expression pattern. |
required |
value
|
str | SeriesT
|
String that will replace the matched substring. |
required |
literal
|
bool
|
Treat |
False
|
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> s_native = pd.Series(["123abc", "abc abc123"])
>>> s = nw.from_native(s_native, series_only=True)
>>> s.str.replace_all("abc", "").to_native()
0 123
1 123
dtype: object
slice
slice(offset: int, length: int | None = None) -> SeriesT
Create subslices of the string values of a Series.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
offset
|
int
|
Start index. Negative indexing is supported. |
required |
length
|
int | None
|
Length of the slice. If set to |
None
|
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> s_native = pd.Series(["pear", None, "papaya"])
>>> s = nw.from_native(s_native, series_only=True)
>>> s.str.slice(4, 3).to_native()
0
1 None
2 ya
dtype: object
split
split(by: str) -> SeriesT
Split the string values of a Series by a substring.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
by
|
str
|
Substring to split by. |
required |
Examples:
>>> import polars as pl
>>> import narwhals as nw
>>> s_native = pl.Series(["foo bar", "foo_bar"])
>>> s = nw.from_native(s_native, series_only=True)
>>> s.str.split("_").to_native()
shape: (2,)
Series: '' [list[str]]
[
["foo bar"]
["foo", "bar"]
]
starts_with
starts_with(prefix: str) -> SeriesT
Check if string values start with a substring.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
prefix
|
str
|
prefix substring |
required |
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> s_native = pd.Series(["apple", "mango", None])
>>> s = nw.from_native(s_native, series_only=True)
>>> s.str.starts_with("app").to_native()
0 True
1 False
2 None
dtype: object
strip_chars
strip_chars(characters: str | None = None) -> SeriesT
Remove leading and trailing characters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
characters
|
str | None
|
The set of characters to be removed. All combinations of this set of characters will be stripped from the start and end of the string. If set to None (default), all leading and trailing whitespace is removed instead. |
None
|
Examples:
>>> import polars as pl
>>> import narwhals as nw
>>> s_native = pl.Series(["apple", "\nmango"])
>>> s = nw.from_native(s_native, series_only=True)
>>> s.str.strip_chars().to_native()
shape: (2,)
Series: '' [str]
[
"apple"
"mango"
]
tail
tail(n: int = 5) -> SeriesT
Take the last n elements of each string.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n
|
int
|
Number of elements to take. Negative indexing is supported (see note (1.)) |
5
|
Notes
- When the
n
input is negative,tail
returns characters starting from the n-th from the beginning of the string. For example, ifn = -3
, then all characters except the first three are returned. - If the length of the string has fewer than
n
characters, the full string is returned.
Examples:
>>> import pyarrow as pa
>>> import narwhals as nw
>>> s_native = pa.chunked_array([["taata", "taatatata", "zukkyun"]])
>>> s = nw.from_native(s_native, series_only=True)
>>> s.str.tail().to_native()
<pyarrow.lib.ChunkedArray object at ...>
[
[
"taata",
"atata",
"kkyun"
]
]
to_date
to_date(format: str | None = None) -> SeriesT
Convert to date dtype.
Warning
As different backends auto-infer format in different ways, if format=None
there is no guarantee that the result will be equal.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
format
|
str | None
|
Format to use for conversion. If set to None (default), the format is inferred from the data. |
None
|
Examples:
>>> import pyarrow as pa
>>> import narwhals as nw
>>> s_native = pa.chunked_array([["2020-01-01", "2020-01-02"]])
>>> s = nw.from_native(s_native, series_only=True)
>>> s.str.to_date(format="%Y-%m-%d").to_native()
<pyarrow.lib.ChunkedArray object at ...>
[
[
2020-01-01,
2020-01-02
]
]
to_datetime
to_datetime(format: str | None = None) -> SeriesT
Parse Series with strings to a Series with Datetime dtype.
Notes
- pandas defaults to nanosecond time unit, Polars to microsecond. Prior to pandas 2.0, nanoseconds were the only time unit supported in pandas, with no ability to set any other one. The ability to set the time unit in pandas, if the version permits, will arrive.
- timezone-aware strings are all converted to and parsed as UTC.
Warning
As different backends auto-infer format in different ways, if format=None
there is no guarantee that the result will be equal.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
format
|
str | None
|
Format to use for conversion. If set to None (default), the format is inferred from the data. |
None
|
Examples:
>>> import polars as pl
>>> import narwhals as nw
>>> s_native = pl.Series(["2020-01-01", "2020-01-02"])
>>> s = nw.from_native(s_native, series_only=True)
>>> s.str.to_datetime(
... format="%Y-%m-%d"
... ).to_native()
shape: (2,)
Series: '' [datetime[μs]]
[
2020-01-01 00:00:00
2020-01-02 00:00:00
]
to_lowercase
to_lowercase() -> SeriesT
Transform string to lowercase variant.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> s_native = pd.Series(["APPLE", None])
>>> s = nw.from_native(s_native, series_only=True)
>>> s.str.to_lowercase().to_native()
0 apple
1 None
dtype: object
to_uppercase
to_uppercase() -> SeriesT
Transform string to uppercase variant.
Notes
The PyArrow backend will convert 'ß' to 'ẞ' instead of 'SS'. For more info see: https://github.com/apache/arrow/issues/34599 There may be other unicode-edge-case-related variations across implementations.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> s_native = pd.Series(["apple", None])
>>> s = nw.from_native(s_native, series_only=True)
>>> s.str.to_uppercase().to_native()
0 APPLE
1 None
dtype: object
zfill
zfill(width: int) -> SeriesT
Pad strings with zeros on the left.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
width
|
int
|
The target width of the string. If the string is shorter than this width, it will be padded with zeros on the left. |
required |
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> s_native = pd.Series(["+1", "-23", "456", "123456"])
>>> s = nw.from_native(s_native, series_only=True)
>>> s.str.zfill(5).to_native()
0 +0001
1 -0023
2 00456
3 123456
dtype: object