narwhals.Series.str
contains(pattern, *, literal=False)
Check if string contains a substring that matches a pattern.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pattern
|
str
|
A Character sequence or valid regular expression pattern. |
required |
literal
|
bool
|
If True, treats the pattern as a literal string. If False, assumes the pattern is a regular expression. |
False
|
Examples:
>>> import pandas as pd
>>> import polars as pl
>>> import narwhals as nw
>>> from narwhals.typing import IntoSeriesT
>>> pets = ["cat", "dog", "rabbit and parrot", "dove", None]
>>> s_pd = pd.Series(pets)
>>> s_pl = pl.Series(pets)
We define a dataframe-agnostic function:
>>> def my_library_agnostic_function(s_native: IntoSeriesT) -> IntoSeriesT:
... s = nw.from_native(s_native, series_only=True)
... return s.str.contains("parrot|dove").to_native()
We can then pass either pandas or Polars to func
:
>>> my_library_agnostic_function(s_pd)
0 False
1 False
2 True
3 True
4 None
dtype: object
>>> my_library_agnostic_function(s_pl)
shape: (5,)
Series: '' [bool]
[
false
false
true
true
null
]
ends_with(suffix)
Check if string values end with a substring.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
suffix
|
str
|
suffix substring |
required |
Examples:
>>> import pandas as pd
>>> import polars as pl
>>> import narwhals as nw
>>> from narwhals.typing import IntoSeriesT
>>> data = ["apple", "mango", None]
>>> s_pd = pd.Series(data)
>>> s_pl = pl.Series(data)
We define a dataframe-agnostic function:
>>> def my_library_agnostic_function(s_native: IntoSeriesT) -> IntoSeriesT:
... s = nw.from_native(s_native, series_only=True)
... return s.str.ends_with("ngo").to_native()
We can then pass either pandas or Polars to func
:
>>> my_library_agnostic_function(s_pd)
0 False
1 True
2 None
dtype: object
>>> my_library_agnostic_function(s_pl)
shape: (3,)
Series: '' [bool]
[
false
true
null
]
head(n=5)
Take the first n elements of each string.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n
|
int
|
Number of elements to take. Negative indexing is supported (see note (1.)) |
5
|
Notes
- When the
n
input is negative,head
returns characters up to the n-th from the end of the string. For example, ifn = -3
, then all characters except the last three are returned. - If the length of the string has fewer than
n
characters, the full string is returned.
Examples:
>>> import pandas as pd
>>> import polars as pl
>>> import narwhals as nw
>>> from narwhals.typing import IntoSeriesT
>>> lyrics = ["Atatata", "taata", "taatatata", "zukkyun"]
>>> s_pd = pd.Series(lyrics)
>>> s_pl = pl.Series(lyrics)
We define a dataframe-agnostic function:
>>> def my_library_agnostic_function(s_native: IntoSeriesT) -> IntoSeriesT:
... s = nw.from_native(s_native, series_only=True)
... return s.str.head().to_native()
We can then pass either pandas or Polars to func
:
>>> my_library_agnostic_function(s_pd)
0 Atata
1 taata
2 taata
3 zukky
dtype: object
>>> my_library_agnostic_function(s_pl)
shape: (4,)
Series: '' [str]
[
"Atata"
"taata"
"taata"
"zukky"
]
len_chars()
Return the length of each string as the number of characters.
Examples:
>>> import pandas as pd
>>> import polars as pl
>>> import narwhals as nw
>>> from narwhals.typing import IntoSeriesT
>>> data = ["foo", "Café", "345", "東京", None]
>>> s_pd = pd.Series(data)
>>> s_pl = pl.Series(data)
We define a dataframe-agnostic function:
>>> def my_library_agnostic_function(s_native: IntoSeriesT) -> IntoSeriesT:
... s = nw.from_native(s_native, series_only=True)
... return s.str.len_chars().to_native()
We can then pass either pandas or Polars to func
:
>>> my_library_agnostic_function(s_pd)
0 3.0
1 4.0
2 3.0
3 2.0
4 NaN
dtype: float64
>>> my_library_agnostic_function(s_pl)
shape: (5,)
Series: '' [u32]
[
3
4
3
2
null
]
replace(pattern, value, *, literal=False, n=1)
Replace first matching regex/literal substring with a new string value.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pattern
|
str
|
A valid regular expression pattern. |
required |
value
|
str
|
String that will replace the matched substring. |
required |
literal
|
bool
|
Treat |
False
|
n
|
int
|
Number of matches to replace. |
1
|
Examples:
>>> import pandas as pd
>>> import polars as pl
>>> import narwhals as nw
>>> from narwhals.typing import IntoSeriesT
>>> data = ["123abc", "abc abc123"]
>>> s_pd = pd.Series(data)
>>> s_pl = pl.Series(data)
We define a dataframe-agnostic function:
>>> def my_library_agnostic_function(s_native: IntoSeriesT) -> IntoSeriesT:
... s = nw.from_native(s_native, series_only=True)
... s = s.str.replace("abc", "")
... return s.to_native()
We can then pass either pandas or Polars to func
:
>>> my_library_agnostic_function(s_pd)
0 123
1 abc123
dtype: object
>>> my_library_agnostic_function(s_pl)
shape: (2,)
Series: '' [str]
[
"123"
" abc123"
]
replace_all(pattern, value, *, literal=False)
Replace all matching regex/literal substring with a new string value.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pattern
|
str
|
A valid regular expression pattern. |
required |
value
|
str
|
String that will replace the matched substring. |
required |
literal
|
bool
|
Treat |
False
|
Examples:
>>> import pandas as pd
>>> import polars as pl
>>> import narwhals as nw
>>> from narwhals.typing import IntoSeriesT
>>> data = ["123abc", "abc abc123"]
>>> s_pd = pd.Series(data)
>>> s_pl = pl.Series(data)
We define a dataframe-agnostic function:
>>> def my_library_agnostic_function(s_native: IntoSeriesT) -> IntoSeriesT:
... s = nw.from_native(s_native, series_only=True)
... s = s.str.replace_all("abc", "")
... return s.to_native()
We can then pass either pandas or Polars to func
:
>>> my_library_agnostic_function(s_pd)
0 123
1 123
dtype: object
>>> my_library_agnostic_function(s_pl)
shape: (2,)
Series: '' [str]
[
"123"
" 123"
]
slice(offset, length=None)
Create subslices of the string values of a Series.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
offset
|
int
|
Start index. Negative indexing is supported. |
required |
length
|
int | None
|
Length of the slice. If set to |
None
|
Examples:
>>> import pandas as pd
>>> import polars as pl
>>> import narwhals as nw
>>> from narwhals.typing import IntoSeriesT
>>> data = ["pear", None, "papaya", "dragonfruit"]
>>> s_pd = pd.Series(data)
>>> s_pl = pl.Series(data)
We define a dataframe-agnostic function:
>>> def my_library_agnostic_function(s_native: IntoSeriesT) -> IntoSeriesT:
... s = nw.from_native(s_native, series_only=True)
... return s.str.slice(4, length=3).to_native()
We can then pass either pandas or Polars to func
:
>>> my_library_agnostic_function(s_pd)
0
1 None
2 ya
3 onf
dtype: object
>>> my_library_agnostic_function(s_pl)
shape: (4,)
Series: '' [str]
[
""
null
"ya"
"onf"
]
Using negative indexes:
>>> def my_library_agnostic_function(s_native: IntoSeriesT) -> IntoSeriesT:
... s = nw.from_native(s_native, series_only=True)
... return s.str.slice(-3).to_native()
>>> my_library_agnostic_function(s_pd)
0 ear
1 None
2 aya
3 uit
dtype: object
>>> my_library_agnostic_function(s_pl)
shape: (4,)
Series: '' [str]
[
"ear"
null
"aya"
"uit"
]
starts_with(prefix)
Check if string values start with a substring.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
prefix
|
str
|
prefix substring |
required |
Examples:
>>> import pandas as pd
>>> import polars as pl
>>> import narwhals as nw
>>> from narwhals.typing import IntoSeriesT
>>> data = ["apple", "mango", None]
>>> s_pd = pd.Series(data)
>>> s_pl = pl.Series(data)
We define a dataframe-agnostic function:
>>> def my_library_agnostic_function(s_native: IntoSeriesT) -> IntoSeriesT:
... s = nw.from_native(s_native, series_only=True)
... return s.str.starts_with("app").to_native()
We can then pass either pandas or Polars to func
:
>>> my_library_agnostic_function(s_pd)
0 True
1 False
2 None
dtype: object
>>> my_library_agnostic_function(s_pl)
shape: (3,)
Series: '' [bool]
[
true
false
null
]
strip_chars(characters=None)
Remove leading and trailing characters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
characters
|
str | None
|
The set of characters to be removed. All combinations of this set of characters will be stripped from the start and end of the string. If set to None (default), all leading and trailing whitespace is removed instead. |
None
|
Examples:
>>> import pandas as pd
>>> import polars as pl
>>> import narwhals as nw
>>> from narwhals.typing import IntoSeriesT
>>> data = ["apple", "\nmango"]
>>> s_pd = pd.Series(data)
>>> s_pl = pl.Series(data)
We define a dataframe-agnostic function:
>>> def my_library_agnostic_function(s_native: IntoSeriesT) -> IntoSeriesT:
... s = nw.from_native(s_native, series_only=True)
... s = s.str.strip_chars()
... return s.to_native()
We can then pass either pandas or Polars to func
:
>>> my_library_agnostic_function(s_pd)
0 apple
1 mango
dtype: object
>>> my_library_agnostic_function(s_pl)
shape: (2,)
Series: '' [str]
[
"apple"
"mango"
]
tail(n=5)
Take the last n elements of each string.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n
|
int
|
Number of elements to take. Negative indexing is supported (see note (1.)) |
5
|
Notes
- When the
n
input is negative,tail
returns characters starting from the n-th from the beginning of the string. For example, ifn = -3
, then all characters except the first three are returned. - If the length of the string has fewer than
n
characters, the full string is returned.
Examples:
>>> import pandas as pd
>>> import polars as pl
>>> import narwhals as nw
>>> from narwhals.typing import IntoSeriesT
>>> lyrics = ["Atatata", "taata", "taatatata", "zukkyun"]
>>> s_pd = pd.Series(lyrics)
>>> s_pl = pl.Series(lyrics)
We define a dataframe-agnostic function:
>>> def my_library_agnostic_function(s_native: IntoSeriesT) -> IntoSeriesT:
... s = nw.from_native(s_native, series_only=True)
... return s.str.tail().to_native()
We can then pass either pandas or Polars to func
:
>>> my_library_agnostic_function(s_pd)
0 atata
1 taata
2 atata
3 kkyun
dtype: object
>>> my_library_agnostic_function(s_pl)
shape: (4,)
Series: '' [str]
[
"atata"
"taata"
"atata"
"kkyun"
]
to_datetime(format=None)
Parse Series with strings to a Series with Datetime dtype.
Notes
pandas defaults to nanosecond time unit, Polars to microsecond. Prior to pandas 2.0, nanoseconds were the only time unit supported in pandas, with no ability to set any other one. The ability to set the time unit in pandas, if the version permits, will arrive.
Warning
As different backends auto-infer format in different ways, if format=None
there is no guarantee that the result will be equal.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
format
|
str | None
|
Format to use for conversion. If set to None (default), the format is inferred from the data. |
None
|
Examples:
>>> import pandas as pd
>>> import polars as pl
>>> import pyarrow as pa
>>> import narwhals as nw
>>> from narwhals.typing import IntoSeriesT
>>> data = ["2020-01-01", "2020-01-02"]
>>> s_pd = pd.Series(data)
>>> s_pl = pl.Series(data)
>>> s_pa = pa.chunked_array([data])
We define a dataframe-agnostic function:
>>> def my_library_agnostic_function(s_native: IntoSeriesT) -> IntoSeriesT:
... s = nw.from_native(s_native, series_only=True)
... return s.str.to_datetime(format="%Y-%m-%d").to_native()
We can then pass any supported library such as pandas, Polars, or PyArrow::
>>> my_library_agnostic_function(s_pd)
0 2020-01-01
1 2020-01-02
dtype: datetime64[ns]
>>> my_library_agnostic_function(s_pl)
shape: (2,)
Series: '' [datetime[μs]]
[
2020-01-01 00:00:00
2020-01-02 00:00:00
]
>>> my_library_agnostic_function(s_pa)
<pyarrow.lib.ChunkedArray object at 0x...>
[
[
2020-01-01 00:00:00.000000,
2020-01-02 00:00:00.000000
]
]
to_lowercase()
Transform string to lowercase variant.
Examples:
>>> import pandas as pd
>>> import polars as pl
>>> import narwhals as nw
>>> from narwhals.typing import IntoSeriesT, IntoFrameT
>>> data = {"fruits": ["APPLE", "MANGO", None]}
>>> df_pd = pd.DataFrame(data)
>>> df_pl = pl.DataFrame(data)
We define a dataframe-agnostic function:
>>> def my_library_agnostic_function(df_native: IntoFrameT) -> IntoFrameT:
... df = nw.from_native(df_native)
... return df.with_columns(
... lower_col=nw.col("fruits").str.to_lowercase()
... ).to_native()
We can then pass either pandas or Polars to func
:
>>> my_library_agnostic_function(df_pd)
fruits lower_col
0 APPLE apple
1 MANGO mango
2 None None
>>> my_library_agnostic_function(df_pl)
shape: (3, 2)
┌────────┬───────────┐
│ fruits ┆ lower_col │
│ --- ┆ --- │
│ str ┆ str │
╞════════╪═══════════╡
│ APPLE ┆ apple │
│ MANGO ┆ mango │
│ null ┆ null │
└────────┴───────────┘
to_uppercase()
Transform string to uppercase variant.
Notes
The PyArrow backend will convert 'ß' to 'ẞ' instead of 'SS'. For more info see: https://github.com/apache/arrow/issues/34599 There may be other unicode-edge-case-related variations across implementations.
Examples:
>>> import pandas as pd
>>> import polars as pl
>>> import narwhals as nw
>>> from narwhals.typing import IntoFrameT
>>> data = {"fruits": ["apple", "mango", None]}
>>> df_pd = pd.DataFrame(data)
>>> df_pl = pl.DataFrame(data)
We define a dataframe-agnostic function:
>>> def my_library_agnostic_function(df_native: IntoFrameT) -> IntoFrameT:
... df = nw.from_native(df_native)
... return df.with_columns(
... upper_col=nw.col("fruits").str.to_uppercase()
... ).to_native()
We can then pass either pandas or Polars to func
:
>>> my_library_agnostic_function(df_pd)
fruits upper_col
0 apple APPLE
1 mango MANGO
2 None None
>>> my_library_agnostic_function(df_pl)
shape: (3, 2)
┌────────┬───────────┐
│ fruits ┆ upper_col │
│ --- ┆ --- │
│ str ┆ str │
╞════════╪═══════════╡
│ apple ┆ APPLE │
│ mango ┆ MANGO │
│ null ┆ null │
└────────┴───────────┘